RNN、LSTM、Transformer推荐博文

最近在了解RNN、LSTM、transformer的相关原理,看了一些博文,下面做一点记录,以方便自己或者感兴趣的朋友查阅。

如果后续看到别的好的,也可能会更新或者添加在评论里。

RNN:
1.【循环神经网络(RNN)从零开始完整教程】

里面有个小实践,正弦波序列预测。代码格式非常规范,很容易理解。

使用pytorch实现

2.一步一步学RNN:从入门到实践指南

从基础到稍微深一点的应用,都给出了一些小实践。

使用tensorflow实现

3.Pytorch循环神经网络(RNN)快速入门与实战

对语句解释十分详细,文中提到的文章也都很不错,有空可以看看。

使用pytorch实现了对航线的预测。

代码中,有个画3D图的环节,如果不能正常画出3D图,需要把这句话ax = Axes3D(fig) 改成ax = fig.add_subplot(111, projection='3d') ,原语句出问题的原因是,matplotlib新版的用法更加规范

另,plt画图需要用到中文时,记得下中文文字库,不然容易显示错误。要不直接title、label之类全部用英文。

4.循环神经网络(RNN)

这个网站(名叫菜鸟教程)还蛮推荐的,还有很多其他资源。

这篇里面对结构的解释蛮简介的,基本结构形式的代码也有基本展示。要是结构图能有图示就更好了。

LSTM:

LSTM是在RNN基础上,为了解决梯度消失和爆炸的问题,主要引入输入门、遗忘门、输出门。RGU则是对LSTM的简化
1.一个很有名的blog

介绍LSTM基本原理的blog

2.理解Pytorch中LSTM的输入输出参数含义

对参数的维度、语句等有一个较好的解释

Transformer:
1.【超详细】【原理篇&实战篇】一文读懂Transformer

这篇博文的参考文章也非常多,建议可以看看。

2.三万字最全解析!从零实现Transformer(小白必会版😃)

非常详细,有的不懂的,可以边看边搜,代码过一遍,理解会好很多。

这个作者在他别的博文里,还写了一些实践,有时间可以试试。

相关推荐
凯子坚持 c几秒前
StreamingLLM:无需训练即可支持无限上下文的推理技术
人工智能
Tfly__几秒前
在PX4 gazebo仿真中加入Mid360(最新)
linux·人工智能·自动驾驶·ros·无人机·px4·mid360
野犬寒鸦几秒前
从零起步学习并发编程 || 第七章:ThreadLocal深层解析及常见问题解决方案
java·服务器·开发语言·jvm·后端·学习
LLWZAI几秒前
让朱雀AI检测无法判断的AI公众号文章,当创作者开始与算法「躲猫猫」
大数据·人工智能·深度学习
陈桴浮海2 分钟前
【Linux&Ansible】学习笔记合集二
linux·学习·ansible
深圳市九鼎创展科技14 分钟前
瑞芯微 RK3399 开发板 X3399 评测:高性能 ARM 平台的多面手
linux·arm开发·人工智能·单片机·嵌入式硬件·边缘计算
Σίσυφος190014 分钟前
PCL法向量估计 之 RANSAC 平面估计法向量
算法·机器学习·平面
HELLO程序员18 分钟前
Claude Code 2.1 发布:2026 年 AI 智能体开发的范式革命
人工智能
xhbaitxl20 分钟前
算法学习day39-动态规划
学习·算法·动态规划
I_LPL21 分钟前
day23 代码随想录算法训练营 回溯专题2
算法·hot100·回溯算法·求职面试