【python】爬取豆瓣电影Top250(附源码)

前言

在网络爬虫的开发过程中,经常会遇到需要处理一些反爬机制的情况。其中之一就是网站对于频繁访问的限制,即IP封禁。为了绕过这种限制,我们可以使用代理IP来动态改变请求的来源IP地址。在本篇博客中,将介绍如何使用代理IP的技术来爬取某瓣电影排行榜,并将结果写入Excel文件。

准备工作

首先,我们需要准备以下环境和工具:

  • Python编程语言

  • requests库:用于发送HTTP请求

  • BeautifulSoup库:用于解析HTML页面

  • openpyxl库:用于操作Excel文件

  • 一个可用的代理IP池

步骤

1. 获取代理IP

使用搜索引擎搜索"免费代理IP",找到一个可用的代理IP网站。请注意,不同的网站可能有不同的获取代理IP的方式。你需要根据特定网站的规则来获取代理IP列表。

使用IP代理的必要性:

  1. 隐藏真实的访问源,保护个人或机构的隐私和安全。

  2. 绕过目标网站的访问限制,如IP封禁、地区限制等。

  3. 分散访问压力,提高爬取效率和稳定性。

  4. 收集不同地区或代理服务器上的数据,用于数据分析和对比。

爬虫是一种通过自动化方式从网站上获取数据的程序,而代理IP则是用于隐藏真实IP地址的中间服务器。

IP代理和爬虫的关系?

当你使用爬虫程序时,你的请求会发送到目标网站,并且网站可以看到你的真实IP地址。然而,如果你频繁地发送请求,可能会导致你的IP地址被封锁或限制访问。为了解决这个问题,可以使用代理IP。

代理IP充当了一个中间服务器的角色,将你的请求通过不同的IP地址发送到目标网站。这样,目标网站只能看到代理IP的地址,而不是你的真实IP地址。通过使用不同的代理IP轮换发送请求,可以减少被封锁或限制访问的风险。

另外,代理IP还可以用于绕过地理限制。有些网站或服务可能根据用户所在地区提供不同的内容或限制访问。通过使用代理IP,你可以模拟不同地区的访问,以便获取特定地区的数据。

2. 验证代理IP的可用性

将获取的代理IP列表保存到一个文件中(例如proxies.txt),然后编写代码来验证这些代理IP是否可用。我们可以通过发送请求到一个公开的IP查询API,来检查代理IP是否有效。

python 复制代码
import requests
​
def check_proxy(proxy):
    try:
        response = requests.get("http://ip-api.com/json", proxies={"http": proxy, "https": proxy}, timeout=5)
        if response.status_code == 200:
            return True
    except requests.exceptions.RequestException:
        pass
    return False
​
with open("proxies.txt", "r") as f:
    proxies = f.read().splitlines()
​
valid_proxies = []
for proxy in proxies:
    if check_proxy(proxy):
        valid_proxies.append(proxy)
​
print(valid_proxies)

3. 爬取某瓣电影排行榜

使用valid_proxies中的代理IP,编写代码来发送HTTP请求并解析网页内容。我们可以使用BeautifulSoup库来解析HTML页面,并提取所需的信息。

导入模块:

代码导入了所需要的库,包括re用于正则表达式操作,pandas用于写入Excel文件,requests用于发送HTTP请求,lxml用于解析HTML网页内容,time用于延时操作。

python 复制代码
import re # 正则
import pandas as pd # pandas,写入Excel文件
import requests
from lxml import etree
import time 

定义函数get_html_str(url),该函数用于发送HTTP请求并获取响应内容。函数中设置了请求头模拟浏览器,并可以添加代理IP进行请求。最后返回网页源码。

python 复制代码
def get_html_str(url):
    # 请求头
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.69 Safari/537.36'}

    proxies = {
        "http": "自己填一下子",
    }
    # 添加请求头和代理IP发送请求
    response = requests.get(url, headers=headers, proxies=proxies)  #
    # 获取网页源码
    html_str = response.content.decode()
    # 返回网页源码
    return html_str

定义函数get_data(html_str, data_list),该函数用于从网页源码中提取数据并存入列表。函数使用lxml将网页源码转换为Elements对象方便后续使用XPath进行解析。通过XPath取到所有的li标签,然后遍历每个li标签,利用XPath获取每个字段的信息,例如排名、电影名、评分等,并使用正则表达式进行字符串的提取和处理,最后将数据存入列表。

python 复制代码
def get_data(html_str, data_list):
    """提取数据写入列表"""
    # 将html字符串转换为etree对象方便后面使用xpath进行解析
    html_data = etree.HTML(html_str)
    # 利用xpath取到所有的li标签
    li_list = html_data.xpath("//ol[@class='grid_view']/li")
    # 打印一下li标签个数看是否和一页的电影个数对得上
    print(len(li_list))  # 输出25,没有问题
    # 遍历li_list列表取到某一个电影的对象
    for li in li_list:
        # 用xpath获取每一个字段信息
        # 排名
        ranking = li.xpath(".//div[@class='pic']/em/text()")[0]
        # 电影名
        title = li.xpath(".//div[@class='hd']/a/span[1]/text()")[0]
        # 评分
        score = li.xpath(".//span[@class='rating_num']/text()")[0]
        # 评价人数
        evaluators_number = li.xpath(".//div[@class='star']/span[4]/text()")[0]
        evaluators_number = evaluators_number.replace('人评价', '')  # 将'人评价'替换为替换为空,更美观
        # 导演、主演
        str1 = li.xpath(".//div[@class='bd']/p[1]//text()")[0]
        # 利用正则提取导演名
        try:
            director = re.findall("导演: (.*?)主演", str1)[0]
            director = re.sub('\xa0', '', director)
        except:
            director = None
        # 利用正则提取主演
        try:
            performer = re.findall("主演: (.*)", str1)[0]
            performer = re.sub('\xa0', '', performer)
        except:
            performer = None
        # 上映时间、制片国家、电影类型都在这里标签下
        str2 = li.xpath(".//div[@class='bd']/p[1]//text()")[1]
        #
        try:
            # 通过斜杠进行分割
            str2_list = str2.split(' / ')
            # 年份
            year = re.sub('[\n ]', '', str2_list[0])
            # 制片国家
            country = str2_list[1]
            # 影片类型
            type = re.sub('[\n ]', '', str2_list[2])
        except:
            year = None
            country = None
            type = None
        url = li.xpath(".//div[@class='hd']/a/@href")[0]
        print({'排名': ranking, '电影名': title, '评分': score, '评价人数': evaluators_number, '导演': director,
               '主演': performer, '年份': year, '制片国家': country, '影片类型': type, '影片主页链接': url})
        data_list.append(
            {'排名': ranking, '电影名': title, '评分': score, '评价人数': evaluators_number, '导演': director,
             '主演': performer, '年份': year, '制片国家': country, '影片类型': type, '影片主页链接': url})

定义函数into_excel(data_list),该函数用于将数据列表写入Excel文件。首先创建一个DataFrame对象,然后使用to_excel()方法将DataFrame写入Excel文件。

python 复制代码
def into_excel(data_list):
    # 创建DataFrame对象
    df = pd.DataFrame(data_list)
    # 写入excel文件
    df.to_excel('电影Top250排行.xlsx')

定义了一个主函数main(),该函数用于控制流程。在主函数中,设置了翻页,循环遍历10页的数据。通过拼接URL,调用get_html_str()函数获取网页源码,然后调用get_data()函数提取数据,并将数据存入列表。为了控制爬取速度,使用time.sleep()方法进行延时操作。最后调用into_excel()函数将数据列表写入Excel文件。

python 复制代码
def main():
    data_list = []  # 空列表用于存储每页获取到的数据
    # 1. 设置翻页
    for i in range(10):
        url = 'https://movie.douban.com/top250?start=' + str(i * 25) + '&filter='
        # 2. 获取网页源码
        html_str = get_html_str(url)
        # 3. 提取数据
        get_data(html_str, data_list)
        # 4. 限制爬取的速度
        time.sleep(5)
    # 5. 写入excel
    into_excel(data_list)


if __name__ == "__main__":
    main()

最终效果图

完整代码如下:

python 复制代码
import re # 正则
import pandas as pd # pandas,写入Excel文件
import requests
from lxml import etree
import time 


def get_html_str(url):
    # 请求头
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.69 Safari/537.36'}

    proxies = {
        "http": "自己填一下子",
    }
    # 添加请求头和代理IP发送请求
    response = requests.get(url, headers=headers, proxies=proxies)  #
    # 获取网页源码
    html_str = response.content.decode()
    # 返回网页源码
    return html_str


def get_data(html_str, data_list):
    """提取数据写入列表"""
    # 将html字符串转换为etree对象方便后面使用xpath进行解析
    html_data = etree.HTML(html_str)
    # 利用xpath取到所有的li标签
    li_list = html_data.xpath("//ol[@class='grid_view']/li")
    # 打印一下li标签个数看是否和一页的电影个数对得上
    print(len(li_list))  # 输出25,没有问题
    # 遍历li_list列表取到某一个电影的对象
    for li in li_list:
        # 用xpath获取每一个字段信息
        # 排名
        ranking = li.xpath(".//div[@class='pic']/em/text()")[0]
        # 电影名
        title = li.xpath(".//div[@class='hd']/a/span[1]/text()")[0]
        # 评分
        score = li.xpath(".//span[@class='rating_num']/text()")[0]
        # 评价人数
        evaluators_number = li.xpath(".//div[@class='star']/span[4]/text()")[0]
        evaluators_number = evaluators_number.replace('人评价', '')  # 将'人评价'替换为替换为空,更美观
        # 导演、主演
        str1 = li.xpath(".//div[@class='bd']/p[1]//text()")[0]
        # 利用正则提取导演名
        try:
            director = re.findall("导演: (.*?)主演", str1)[0]
            director = re.sub('\xa0', '', director)
        except:
            director = None
        # 利用正则提取主演
        try:
            performer = re.findall("主演: (.*)", str1)[0]
            performer = re.sub('\xa0', '', performer)
        except:
            performer = None
        # 上映时间、制片国家、电影类型都在这里标签下
        str2 = li.xpath(".//div[@class='bd']/p[1]//text()")[1]
        #
        try:
            # 通过斜杠进行分割
            str2_list = str2.split(' / ')
            # 年份
            year = re.sub('[\n ]', '', str2_list[0])
            # 制片国家
            country = str2_list[1]
            # 影片类型
            type = re.sub('[\n ]', '', str2_list[2])
        except:
            year = None
            country = None
            type = None
        url = li.xpath(".//div[@class='hd']/a/@href")[0]
        print({'排名': ranking, '电影名': title, '评分': score, '评价人数': evaluators_number, '导演': director,
               '主演': performer, '年份': year, '制片国家': country, '影片类型': type, '影片主页链接': url})
        data_list.append(
            {'排名': ranking, '电影名': title, '评分': score, '评价人数': evaluators_number, '导演': director,
             '主演': performer, '年份': year, '制片国家': country, '影片类型': type, '影片主页链接': url})


def into_excel(data_list):
    # 创建DataFrame对象
    df = pd.DataFrame(data_list)
    # 写入excel文件
    df.to_excel('电影Top250排行.xlsx')


def main():
    data_list = []  # 空列表用于存储每页获取到的数据
    # 1. 设置翻页
    for i in range(10):
        url = 'https://movie.douban.com/top250?start=' + str(i * 25) + '&filter='
        # 2. 获取网页源码
        html_str = get_html_str(url)
        # 3. 提取数据
        get_data(html_str, data_list)
        # 4. 限制爬取的速度
        time.sleep(5)
    # 5. 写入excel
    into_excel(data_list)


if __name__ == "__main__":
    main()

总结

通过使用代理IP技术,我们可以绕过网站的IP封禁限制,成功爬取某瓣电影排行榜的信息,并将结果写入Excel文件。这样,我们就可以方便地对电影信息进行整理和分析了。

相关推荐
查理零世几秒前
【算法】数论基础——约数个数定理、约数和定理 python
python·算法·数论
Eiceblue1 小时前
Python 合并 Excel 单元格
开发语言·vscode·python·pycharm·excel
梦云澜1 小时前
论文阅读(十六):利用线性链条件随机场模型检测阵列比较基因组杂交数据的拷贝数变异
深度学习
好评笔记1 小时前
多模态论文笔记——VDT
论文阅读·深度学习·机器学习·大模型·aigc·transformer·面试八股
好评笔记1 小时前
多模态论文笔记——ViViT
论文阅读·深度学习·机器学习·计算机视觉·面试·aigc·transformer
梦云澜1 小时前
论文阅读(五):乳腺癌中的高斯图模型和扩展网络推理
论文阅读·人工智能·深度学习·学习
幸好我会魔法2 小时前
人格分裂(交互问答)-小白想懂Elasticsearch
大数据·spring boot·后端·elasticsearch·搜索引擎·全文检索
顧棟3 小时前
【ES实战】治理项之索引模板相关治理
大数据·elasticsearch·yarn
人类群星闪耀时4 小时前
用深度学习优化供应链管理:让算法成为商业决策的引擎
人工智能·深度学习·算法
weixin_421133414 小时前
编写python 后端 vscode 安装插件大全
开发语言·vscode·python