时序预测 | MATLAB实现基于LSTM长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)

时序预测 | MATLAB实现基于LSTM长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)

目录

    • [时序预测 | MATLAB实现基于LSTM长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)](#时序预测 | MATLAB实现基于LSTM长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价))

预测结果







基本介绍

Matlab实现LSTM长短期记忆神经网络时间序列预测未来(完整程序和数据)

1.Matlab实现LSTM长短期记忆神经网络时间序列预测未来;

2.运行环境Matlab2018及以上,data为数据集,单变量时间序列预测;

3.递归预测未来数据,可以控制预测未来大小的数目,适合循环性、周期性数据预测;

4.命令窗口输出R2、MAE、MAPE、MBE、MSE等评价指标;

程序设计

clike 复制代码
%% 创建混合LSTM网络架构
% 输入特征维度
numFeatures  = f_;
% 输出特征维度
numResponses = 1;
FiltZise = 10;
%  创建"LSTM"模型
    layers = [...
        % 输入特征
        sequenceInputLayer([numFeatures 1 1],'Name','input')
        sequenceFoldingLayer('Name','fold')
        % LSTM特征学习
        lstmLayer(50,'Name','lstm1','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')
        % LSTM输出
        lstmLayer(optVars.NumOfUnits,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')
        dropoutLayer(0.25,'Name','drop3')
        % 全连接层
        fullyConnectedLayer(numResponses,'Name','fc')
        regressionLayer('Name','output')    ];

    layers = layerGraph(layers);
    layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');

%% LSTM训练选项
% 批处理样本
MiniBatchSize =128;
% 最大迭代次数
MaxEpochs = 500;
    options = trainingOptions( 'adam', ...
        'MaxEpochs',500, ...
        'GradientThreshold',1, ...
        'InitialLearnRate',optVars.InitialLearnRate, ...
        'LearnRateSchedule','piecewise', ...
        'LearnRateDropPeriod',400, ...
        'LearnRateDropFactor',0.2, ...
        'L2Regularization',optVars.L2Regularization,...
        'Verbose',false, ...
        'Plots','none');

%% 训练混合网络
net = trainNetwork(XrTrain,YrTrain,layers,options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502

[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
机器学习之心9 小时前
一区北方苍鹰算法优化+创新改进Transformer!NGO-Transformer-LSTM多变量回归预测
算法·lstm·transformer·北方苍鹰算法优化·多变量回归预测·ngo-transformer
只怕自己不够好10 小时前
RNN与LSTM,通过Tensorflow在手写体识别上实战
rnn·tensorflow·lstm
cv小白菜1 天前
多算法模型(BI-LSTM GRU Mamba ekan xgboost)实现功率预测
机器学习·gru·lstm·时间序列·功率预测
拓端研究室TRL5 天前
MATLAB用CNN-LSTM神经网络的语音情感分类深度学习研究
深度学习·神经网络·matlab·cnn·lstm
一去不复返的通信er6 天前
LSTM(长短期记忆网络)详解
人工智能·rnn·深度学习·神经网络·lstm
小叮当爱咖啡7 天前
RNN深度学习案例:LSTM火灾温度预测
rnn·深度学习·lstm
机器学习之心8 天前
时序预测 | 改进图卷积+informer时间序列预测,pytorch架构
人工智能·pytorch·python·时间序列预测·informer·改进图卷积
拓端研究室TRL9 天前
Python注意力机制Attention下CNN-LSTM-ARIMA混合模型预测中国银行股票价格|附数据代码...
开发语言·人工智能·python·cnn·lstm
铖铖的花嫁10 天前
基于RNNs(LSTM, GRU)的红点位置检测(pytorch)
pytorch·gru·lstm
铭瑾熙10 天前
深度学习之 LSTM
人工智能·深度学习·lstm