时序预测 | MATLAB实现基于LSTM长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)

时序预测 | MATLAB实现基于LSTM长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)

目录

    • [时序预测 | MATLAB实现基于LSTM长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价)](#时序预测 | MATLAB实现基于LSTM长短期记忆神经网络的时间序列预测-递归预测未来(多指标评价))

预测结果







基本介绍

Matlab实现LSTM长短期记忆神经网络时间序列预测未来(完整程序和数据)

1.Matlab实现LSTM长短期记忆神经网络时间序列预测未来;

2.运行环境Matlab2018及以上,data为数据集,单变量时间序列预测;

3.递归预测未来数据,可以控制预测未来大小的数目,适合循环性、周期性数据预测;

4.命令窗口输出R2、MAE、MAPE、MBE、MSE等评价指标;

程序设计

clike 复制代码
%% 创建混合LSTM网络架构
% 输入特征维度
numFeatures  = f_;
% 输出特征维度
numResponses = 1;
FiltZise = 10;
%  创建"LSTM"模型
    layers = [...
        % 输入特征
        sequenceInputLayer([numFeatures 1 1],'Name','input')
        sequenceFoldingLayer('Name','fold')
        % LSTM特征学习
        lstmLayer(50,'Name','lstm1','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')
        % LSTM输出
        lstmLayer(optVars.NumOfUnits,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')
        dropoutLayer(0.25,'Name','drop3')
        % 全连接层
        fullyConnectedLayer(numResponses,'Name','fc')
        regressionLayer('Name','output')    ];

    layers = layerGraph(layers);
    layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');

%% LSTM训练选项
% 批处理样本
MiniBatchSize =128;
% 最大迭代次数
MaxEpochs = 500;
    options = trainingOptions( 'adam', ...
        'MaxEpochs',500, ...
        'GradientThreshold',1, ...
        'InitialLearnRate',optVars.InitialLearnRate, ...
        'LearnRateSchedule','piecewise', ...
        'LearnRateDropPeriod',400, ...
        'LearnRateDropFactor',0.2, ...
        'L2Regularization',optVars.L2Regularization,...
        'Verbose',false, ...
        'Plots','none');

%% 训练混合网络
net = trainNetwork(XrTrain,YrTrain,layers,options);

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
深蓝岛21 小时前
LSTM与CNN融合建模的创新技术路径
论文阅读·人工智能·深度学习·机器学习·lstm
拓端研究室5 天前
Python电力负荷预测:LSTM、GRU、DeepAR、XGBoost、Stacking、ARIMA结合多源数据融合与SHAP可解释性的研究
python·gru·lstm
nju_spy7 天前
牛客网 AI题(一)机器学习 + 深度学习
人工智能·深度学习·机器学习·lstm·笔试·损失函数·自注意力机制
jjjxxxhhh1238 天前
【AI】-RNN/LSTM ,Transformer ,CNN 通俗介绍
人工智能·rnn·lstm
【建模先锋】8 天前
一区直接写!CEEMDAN分解 + Informer-LSTM +XGBoost组合预测模型
人工智能·lstm·ceemdan·预测模型·风速预测·时间序列预测模型
fsnine14 天前
从RNN到LSTM:深入理解循环神经网络与长短期记忆网络
网络·rnn·lstm
jie*14 天前
小杰深度学习(fourteen)——视觉-经典神经网络——ResNet
人工智能·python·深度学习·神经网络·机器学习·tensorflow·lstm
Bony-15 天前
奶茶销售数据分析
人工智能·数据挖掘·数据分析·lstm
赴33515 天前
LSTM自然语言处理情感分析项目(四)整合调用各类与方法形成主程序
人工智能·自然语言处理·lstm
赴33515 天前
LSTM自然语言处理情感分析项目(三)定义模型结构与模型训练评估测试
人工智能·自然语言处理·lstm