opencv基础46-图像金字塔02-拉普拉斯金字塔

前面我们介绍了高斯金字塔,高斯金字塔是通过对一幅图像一系列的向下采样所产生的。有时,我们希望通过对金字塔中的小图像进行向上采样以获取完整的大尺寸高分辨率图像,这时就需要用到拉普拉斯金字塔

前面我们已经介绍过,一幅图像在经过向下采样后,再对其进行向上采样,是无法恢复为原始状态的。对此,我们也用程序进行了验证。向上采样并不是向下采样的逆运算。这是很明显的,因为向下采样时在使用高斯滤波器处理后还要抛弃偶数行和偶数列,不可避免地要丢失一些信息。

为了在向上采样时能够恢复具有较高分辨率的原始图像,就要获取在采样过程中所丢失的信息,这些丢失的信息就构成了拉普拉斯金字塔。

拉普拉斯金字塔的定义形式为:

Li = Gi - pyrUp(Gi + 1)

式中:

  • Li表示拉普拉斯金字塔中的第 i 层。
  • Gi表示高斯金字塔中的第 i 层。

拉普拉斯金字塔中的第 i 层,等于"高斯金字塔中的第 i 层"与"高斯金字塔中的第 i+1 层的向上采样结果"之差。图 11-11 展示了高斯金字塔和拉普拉斯金字塔的对应关系。

代码示例:使用函数 cv2.pyrDown()和 cv2.pyrUp()构造拉普拉斯金字塔。

import cv2
O=cv2.imread("lena.png")
G0=O
G1=cv2.pyrDown(G0)
G2=cv2.pyrDown(G1)
G3=cv2.pyrDown(G2)
L0=G0-cv2.pyrUp(G1)
L1=G1-cv2.pyrUp(G2)
L2=G2-cv2.pyrUp(G3)
print("L0.shape=",L0.shape)
print("L1.shape=",L1.shape)
print("L2.shape=",L2.shape)
cv2.imshow("L0",L0)
cv2.imshow("L1",L1)
cv2.imshow("L2",L2)
cv2.waitKey()
cv2.destroyAllWindows()

程序运行后,会输出如下运行结果:

L0.shape= (512, 512, 3)
L1.shape= (256, 256, 3)
L2.shape= (128, 128, 3)

1 中图是通过语句"L0=G0-cv2.pyrUp(G1)",用"原始图像 G0"减去"图像 G1 的向上

采样结果",得到的拉普拉斯金字塔的第 0 层 L0。

右边图是通过语句"L1=G1-cv2.pyrUp(G2)",用"图像 G1"减去"图像 G2 的向上采样

结果",得到的拉普拉斯金字塔的第 1 层 L1。

左边小图是通过语句"L2=G2-cv2.pyrUp(G3)",用"图像 G2"减去"图像 G3 的向上采样

结果",得到的拉普拉斯金字塔的第 2 层 L2。

如何恢复原图?

拉普拉斯金字塔的作用在于,能够恢复高分辨率的图像。图 11-13 演示了如何通过拉普拉斯金字塔恢复高分辨率图像。其中,右图是对左图的简化。

图 11-13 中的各个标记的含义如下:

  1. G0、G1、G2、G3分别是高斯金字塔的第 0 层、第 1 层、第 2 层、第 3 层。
  2. L0、L1、L2分别是拉普拉斯金字塔的第 0 层、第 1 层、第 2 层。
  3. 向下的箭头表示向下采样操作(对应 cv2.pyrDown()函数)。
  4. 向右上方的箭头表示向上采样操作(对应 cv2.pyrUp()函数)。
  5. 加号"+"表示加法操作。
  6. 减号"-"表示减法操作。

在图 11-13 中,描述的操作及关系有:

  1. 向下采样(高斯金字塔的构成)

    G1=cv2.pyrDown(G0)
    G2=cv2.pyrDown(G1)
    G3=cv2.pyrDown(G2)

  2. 拉普拉斯金字塔

    L0=G0-cv2.pyrUp(G1)
    L1=G1-cv2.pyrUp(G2)
    L2=G2-cv2.pyrUp(G3)

  3. 向上采样恢复高分辨率图像

    G0=L0+cv2.pyrUp(G1)
    G1=L1+cv2.pyrUp(G2)
    G2=L2+cv2.pyrUp(G3)

上述关系是通过数学运算推导得到的。例如,已知L0=G0cv2.pyrUp(G1),将表达式右侧的 cv2.pyrUp(G1)移到左侧,就得到了表达式 G0=L0+cv2.pyrUp(G1)。除此之外,G1 和 G2 都可以通过拉普拉斯金字塔的构造表达式得到。在前面已经介绍过了,构造拉普拉斯金字塔的目的就是为了恢复高分辨率的图像。

代码示例:

import cv2
import numpy as np
O=cv2.imread("lena.png")
#==============生成高斯金字塔===================
G0=O
G1=cv2.pyrDown(G0)
G2=cv2.pyrDown(G1)
G3=cv2.pyrDown(G2)
#============生成拉普拉斯金字塔===================
L0=G0-cv2.pyrUp(G1) #拉普拉斯金字塔第 0 层
L1=G1-cv2.pyrUp(G2) #拉普拉斯金字塔第 1 层
L2=G2-cv2.pyrUp(G3) #拉普拉斯金字塔第 2 层
#=================复原 G0======================
RG0=L0+cv2.pyrUp(G1) #通过拉普拉斯图像复原的原始图像 G0


cv2.imshow("L0",L0)
cv2.imshow("L1",L1)
cv2.imshow("L2",L2)
cv2.imshow("RG0",RG0)
cv2.waitKey()
cv2.destroyAllWindows()
相关推荐
边缘计算社区1 分钟前
首个!艾灵参编的工业边缘计算国家标准正式发布
大数据·人工智能·边缘计算
游客52011 分钟前
opencv中的各种滤波器简介
图像处理·人工智能·python·opencv·计算机视觉
一位小说男主12 分钟前
编码器与解码器:从‘乱码’到‘通话’
人工智能·深度学习
Eric.Lee202114 分钟前
moviepy将图片序列制作成视频并加载字幕 - python 实现
开发语言·python·音视频·moviepy·字幕视频合成·图像制作为视频
小俊俊的博客15 分钟前
海康RGBD相机使用C++和Opencv采集图像记录
c++·opencv·海康·rgbd相机
KeyPan16 分钟前
【IMU:视觉惯性SLAM系统】
计算机视觉
7yewh17 分钟前
嵌入式Linux QT+OpenCV基于人脸识别的考勤系统 项目
linux·开发语言·arm开发·驱动开发·qt·opencv·嵌入式linux
Dontla19 分钟前
vscode怎么设置anaconda python解释器(anaconda解释器、vscode解释器)
ide·vscode·python
深圳南柯电子28 分钟前
深圳南柯电子|电子设备EMC测试整改:常见问题与解决方案
人工智能
Kai HVZ29 分钟前
《OpenCV计算机视觉》--介绍及基础操作
人工智能·opencv·计算机视觉