opencv基础46-图像金字塔02-拉普拉斯金字塔

前面我们介绍了高斯金字塔,高斯金字塔是通过对一幅图像一系列的向下采样所产生的。有时,我们希望通过对金字塔中的小图像进行向上采样以获取完整的大尺寸高分辨率图像,这时就需要用到拉普拉斯金字塔

前面我们已经介绍过,一幅图像在经过向下采样后,再对其进行向上采样,是无法恢复为原始状态的。对此,我们也用程序进行了验证。向上采样并不是向下采样的逆运算。这是很明显的,因为向下采样时在使用高斯滤波器处理后还要抛弃偶数行和偶数列,不可避免地要丢失一些信息。

为了在向上采样时能够恢复具有较高分辨率的原始图像,就要获取在采样过程中所丢失的信息,这些丢失的信息就构成了拉普拉斯金字塔。

拉普拉斯金字塔的定义形式为:

Li = Gi - pyrUp(Gi + 1)

式中:

  • Li表示拉普拉斯金字塔中的第 i 层。
  • Gi表示高斯金字塔中的第 i 层。

拉普拉斯金字塔中的第 i 层,等于"高斯金字塔中的第 i 层"与"高斯金字塔中的第 i+1 层的向上采样结果"之差。图 11-11 展示了高斯金字塔和拉普拉斯金字塔的对应关系。

代码示例:使用函数 cv2.pyrDown()和 cv2.pyrUp()构造拉普拉斯金字塔。

import cv2
O=cv2.imread("lena.png")
G0=O
G1=cv2.pyrDown(G0)
G2=cv2.pyrDown(G1)
G3=cv2.pyrDown(G2)
L0=G0-cv2.pyrUp(G1)
L1=G1-cv2.pyrUp(G2)
L2=G2-cv2.pyrUp(G3)
print("L0.shape=",L0.shape)
print("L1.shape=",L1.shape)
print("L2.shape=",L2.shape)
cv2.imshow("L0",L0)
cv2.imshow("L1",L1)
cv2.imshow("L2",L2)
cv2.waitKey()
cv2.destroyAllWindows()

程序运行后,会输出如下运行结果:

L0.shape= (512, 512, 3)
L1.shape= (256, 256, 3)
L2.shape= (128, 128, 3)

1 中图是通过语句"L0=G0-cv2.pyrUp(G1)",用"原始图像 G0"减去"图像 G1 的向上

采样结果",得到的拉普拉斯金字塔的第 0 层 L0。

右边图是通过语句"L1=G1-cv2.pyrUp(G2)",用"图像 G1"减去"图像 G2 的向上采样

结果",得到的拉普拉斯金字塔的第 1 层 L1。

左边小图是通过语句"L2=G2-cv2.pyrUp(G3)",用"图像 G2"减去"图像 G3 的向上采样

结果",得到的拉普拉斯金字塔的第 2 层 L2。

如何恢复原图?

拉普拉斯金字塔的作用在于,能够恢复高分辨率的图像。图 11-13 演示了如何通过拉普拉斯金字塔恢复高分辨率图像。其中,右图是对左图的简化。

图 11-13 中的各个标记的含义如下:

  1. G0、G1、G2、G3分别是高斯金字塔的第 0 层、第 1 层、第 2 层、第 3 层。
  2. L0、L1、L2分别是拉普拉斯金字塔的第 0 层、第 1 层、第 2 层。
  3. 向下的箭头表示向下采样操作(对应 cv2.pyrDown()函数)。
  4. 向右上方的箭头表示向上采样操作(对应 cv2.pyrUp()函数)。
  5. 加号"+"表示加法操作。
  6. 减号"-"表示减法操作。

在图 11-13 中,描述的操作及关系有:

  1. 向下采样(高斯金字塔的构成)

    G1=cv2.pyrDown(G0)
    G2=cv2.pyrDown(G1)
    G3=cv2.pyrDown(G2)

  2. 拉普拉斯金字塔

    L0=G0-cv2.pyrUp(G1)
    L1=G1-cv2.pyrUp(G2)
    L2=G2-cv2.pyrUp(G3)

  3. 向上采样恢复高分辨率图像

    G0=L0+cv2.pyrUp(G1)
    G1=L1+cv2.pyrUp(G2)
    G2=L2+cv2.pyrUp(G3)

上述关系是通过数学运算推导得到的。例如,已知L0=G0cv2.pyrUp(G1),将表达式右侧的 cv2.pyrUp(G1)移到左侧,就得到了表达式 G0=L0+cv2.pyrUp(G1)。除此之外,G1 和 G2 都可以通过拉普拉斯金字塔的构造表达式得到。在前面已经介绍过了,构造拉普拉斯金字塔的目的就是为了恢复高分辨率的图像。

代码示例:

import cv2
import numpy as np
O=cv2.imread("lena.png")
#==============生成高斯金字塔===================
G0=O
G1=cv2.pyrDown(G0)
G2=cv2.pyrDown(G1)
G3=cv2.pyrDown(G2)
#============生成拉普拉斯金字塔===================
L0=G0-cv2.pyrUp(G1) #拉普拉斯金字塔第 0 层
L1=G1-cv2.pyrUp(G2) #拉普拉斯金字塔第 1 层
L2=G2-cv2.pyrUp(G3) #拉普拉斯金字塔第 2 层
#=================复原 G0======================
RG0=L0+cv2.pyrUp(G1) #通过拉普拉斯图像复原的原始图像 G0


cv2.imshow("L0",L0)
cv2.imshow("L1",L1)
cv2.imshow("L2",L2)
cv2.imshow("RG0",RG0)
cv2.waitKey()
cv2.destroyAllWindows()
相关推荐
千澜空19 分钟前
celery在django项目中实现并发任务和定时任务
python·django·celery·定时任务·异步任务
学习前端的小z22 分钟前
【AIGC】如何通过ChatGPT轻松制作个性化GPTs应用
人工智能·chatgpt·aigc
可均可可26 分钟前
C++之OpenCV入门到提高004:Mat 对象的使用
c++·opencv·mat·imread·imwrite
斯凯利.瑞恩27 分钟前
Python决策树、随机森林、朴素贝叶斯、KNN(K-最近邻居)分类分析银行拉新活动挖掘潜在贷款客户附数据代码
python·决策树·随机森林
yannan201903131 小时前
【算法】(Python)动态规划
python·算法·动态规划
埃菲尔铁塔_CV算法1 小时前
人工智能图像算法:开启视觉新时代的钥匙
人工智能·算法
EasyCVR1 小时前
EHOME视频平台EasyCVR视频融合平台使用OBS进行RTMP推流,WebRTC播放出现抖动、卡顿如何解决?
人工智能·算法·ffmpeg·音视频·webrtc·监控视频接入
打羽毛球吗️1 小时前
机器学习中的两种主要思路:数据驱动与模型驱动
人工智能·机器学习
蒙娜丽宁1 小时前
《Python OpenCV从菜鸟到高手》——零基础进阶,开启图像处理与计算机视觉的大门!
python·opencv·计算机视觉
光芒再现dev1 小时前
已解决,部署GPTSoVITS报错‘AsyncRequest‘ object has no attribute ‘_json_response_data‘
运维·python·gpt·语言模型·自然语言处理