R语言生存分析(机器学习)(2)——Enet(弹性网络)

弹性网络(Elastic Net):是一种用于回归分析的统计方法,它是岭回归(Ridge Regression)和lasso回归(Lasso Regression)的结合,旨在克服它们各自的一些限制。弹性网络能够同时考虑L1正则化(lasso)和L2正则化(岭回归),从而在特定情况下对于高维数据集具有更好的性能。

复制代码
#清空
rm(list=ls())
gc()

#导入包
library(glmnet)
help(package="glmnet")
library(survival)
library(caret)
library(tibble)
library(magrittr)

#原始数据处理
data(cancer)
data<-na.omit(lung) %>% data.frame
dim(lung)
#K折交叉验证
folds<-createMultiFolds(y=lung$status,
                        k=3,
                        time=1)
val<-list(train=data,
                  test1=data[folds$Fold1.Rep1,],
                  test2=data[folds$Fold2.Rep1,],
                  test3=data[folds$Fold3.Rep1,])

#构建模型
x1 <- as.matrix(data[,!(colnames(data) %in% c("time","status"))])
x2 <- as.matrix(Surv(data$time,data$status))
result <- data.frame()
#使用循环,使得alpha参数从0到1
for (alpha in seq(0,1,0.1)) {
  set.seed(123)
  fit = cv.glmnet(x1, x2,family = "cox",alpha=alpha,nfolds = 10)
  rs <- lapply(val,function(x){cbind(x[,c("time","status")],RS=as.numeric(predict(fit,type='link',newx=as.matrix(x[,!(colnames(data) %in% c("time","status"))]),s=fit$lambda.min)))})
  cc <- data.frame(Cindex=sapply(rs,function(x){as.numeric(summary(coxph(Surv(time,status)~RS,x))$concordance[1])}))%>%
    rownames_to_column('ID')
  cc$Model <- paste0('Enet','[α=',alpha,']')
  result <- rbind(result,cc)
}
#得到每个alpha下C指数的平均值
library(dplyr)
mean_result<-result %>% 
  group_by(Model) %>% 
  summarise(Cindex=mean(Cindex))

#绘图
plot(fit)
复制代码
mean_result %>%
  ggplot(aes(Cindex,reorder(Model,Cindex)))+
  geom_bar(width=0.7,stat = 'identity',fill='green')+
  geom_text(aes(label = round(Cindex, 2)), hjust=1,vjust =0.5,color = 'black') +  # 在条形柱顶端添加数值
  theme_void()+
  scale_x_break(c(0.05,0.53),scales = 20)
  
mean_result <- pivot_wider(result,names_from = 'ID',values_from = 'Cindex')%>%as.data.frame()
mean_result[,-1] <- apply(mean_result[,-1],2,as.numeric)
heatdata <- as.matrix(mean_result2[, 2:5])
rownames(heatdata) <- mean_result2$Model
args(pheatmap)
pheatmap(heatdata,name = "Cindex",
         cluster_cols = FALSE,#不进行行聚类
         cluster_rows = T,  #进行行聚类
         show_colnames = FALSE,
         show_rownames = T, # 显示行名
         display_numbers=T,
         annotation_col=data.frame(Type=c("train","test1","test2","test3")),
         annotation_colors = list(Type=c(train="red",test1="yellow",
                                               test2="blue",test3="green")),
         cellwidth = 30,  # 调整小方块的宽度
         cellheight = 20 # 调整小方块的高度
         )
相关推荐
没有梦想的咸鱼185-1037-16631 小时前
基于R语言机器学习方法在生态经济学领域中的实践技术应用
开发语言·机器学习·数据分析·r语言
Webb Yu1 小时前
Azure Databricks 实践:数据分析、机器学习、ETL 与 Delta Lake
机器学习·数据分析·azure
君名余曰正则2 小时前
机器学习实操项目01——Numpy入门(基本操作、数组形状操作、复制与试图、多种索引技巧、线性代数)
线性代数·机器学习·numpy
君名余曰正则2 小时前
机器学习04——决策树(信息增益、信息增益率、ID3、C4.5、CART、剪枝、连续值缺失值处理)
人工智能·决策树·机器学习
zhangfeng11333 小时前
R 语法高亮为什么没有,是需要安装专用的编辑软件,R语言自带的R-gui 功能还是比较简单
开发语言·r语言
WangYan20223 小时前
经济学+机器学习+R语言:十大原理、熵权法、随机森林、神经网络、因果推断全解析
r语言·生态经济学·经济学
Mendix3 小时前
使用 Altair RapidMiner 将机器学习引入您的 Mendix 应用程序
人工智能·机器学习
九章云极AladdinEdu3 小时前
Kubernetes设备插件开发实战:实现GPU拓扑感知调度
人工智能·机器学习·云原生·容器·kubernetes·迁移学习·gpu算力
java1234_小锋4 小时前
Scikit-learn Python机器学习 - 特征降维 压缩数据 - 特征选择 - 移除低方差特征(VarianceThreshold)
python·机器学习·scikit-learn