内容一览 :多巴胺是神经系统中重要的神经递质,与运动、记忆和奖赏系统息息相关,它是快乐的信使,当我们看到令人愉悦的东西时,体内就会分泌多巴胺,诱导我们向它追寻。然而,多巴胺的准确定量分析目前仍难以实现。借助机器学习,美国加利福尼亚大学伯克利分校(UCB) 的 Markita P. Landry 研究组对多巴胺的释放量和释放位置,进行了量化分析,让我们距离快乐密码更进一步。 关键词:机器学习 强化学习 多巴胺
作者|雪菜
编辑|三羊
本文首发于 HyperAI 超神经微信公众平台。
我们时常会被问到这样一个问题「你快乐吗」。在对自己最近的生活状况进行回顾之后,我们也许可以做出一个相对令人满意的回答。然而,要回答有关快乐的另一个问题「你有多快乐」,就没那么容易了。
我们可以对快乐进行一个相对准确的是非判断,却很难对快乐进行一个量化的分析,只能用一些程度副词进行大致的评估。
但从生理学角度上看,快乐的程度可以用人体内的激素水平进行判断,其中一种重要激素就是多巴胺。
图 1:让人感到愉快的四种激素从左至右依次是多巴胺、内啡肽、催产素和血清素
多巴胺是神经系统中一种重要的神经递质,负责在细胞之间传递讯息。多巴胺是快乐的信使,当我们看到令人愉悦的事物时,大脑便会释放多巴胺,促使我们去追寻快乐的事物。因此,多巴胺能神经元 (dopaminergic neuron) 控制的一条神经环路也被称为奖赏回路,这一回路与学习、记忆、成瘾行为息息相关。
虽然人们对多巴胺的化学结构,分布区域及生理作用已经有了比较清晰的认识,但对多巴胺在细胞层面及分子层面的作用机制还不甚了解,更无法对多巴胺的在神经环路中的作用进行准确的量化分析。
「量化」快乐:AI 破译多巴胺密码
1997 年,Schultz 等人提出了奖赏回路的可能运行机制------奖赏预测误差假说。这一假说认为,多巴胺能神经元会根据预期奖赏与实际奖赏的误差,调整多巴胺的释放量,进而调整人们追寻某项事物的动机。
2020 年,DeepMind 在大脑中发现不同的神经元对于同一刺激有着不同的奖励预期。也就是说,在大脑当中存在着相对乐观的神经元和比较悲观的神经元。面对同样的半杯水,乐观的神经元会认为,还有半杯水,我们前途光明。而悲观的神经元则会觉得,只剩半杯水了,我们要渴死了。而且进一步研究表明,神经元对奖励预期的分布与实际奖励的分布基本一致。
图 2:神经元的预期奖励(蓝色)和实际奖励(灰色)
在 AI 的帮助下,对于奖赏回路神经机制的解析正在加速推进。
2021 年,美国范德堡大学 (Vandy) 的 Erin S. Calipar 研究组通过监测生物体内多巴胺含量的变化,利用支持向量机 (SVM) 实现了对生物体行为的预测,同时基于实验结果,研究组提出了多巴胺调控生理活动的新模型。
近期,AI 对于多巴胺的解读更上一层楼。借助机器学习, 美国加利福尼亚大学伯克利分校 (UCB) 的 Markita P. Landry 研究组,对多巴胺的释放量和释放脑区进行了量化分析,为神经成像和神经环路的研究提供了新思路。
相关研究已发表在《ACS Chemical Neuroscience》上,标题为「 Identifying Neural Signatures of Dopamine Signaling with Machine Learning」。
图 3:该研究成果已发表在《ACS Chemical Neuroscience》
论文地址:pubs.acs.org/doi/full/10...
该研究主要解决了两个问题:
1、分辨不同刺激下的多巴胺释放量(0.1 mA 及 0.3 mA 电流刺激);
2、判断多巴胺的释放脑区(背外侧纹状体 DLS 及背内侧纹状体 DMS)。
首先,他们用近红外儿茶酚胺纳米传感器 (nIRCat,near infrared catecholamine nanosensors) 对多巴胺进行标记。标记后,在红外显微镜下,多巴胺会发出荧光,荧光强度与多巴胺浓度正相关。对大脑施加电流刺激后,大脑会释放出多巴胺,随后将其回收。这一过程会在红外显微镜下留下一条荧光强度曲线,对荧光曲线进行量化处理,可以得到 8 个统计特征,如平均荧光强度,多巴胺释放位点数 (ROI, regions of interests) 等,还有 2 个时间特征,包括荧光强度高于及低于 2 倍标准差的时长。这些特征值可用于机器学习模型的训练。
图 4:nIRCat 对多巴胺的标记结果
A:电流刺激前后观察到的荧光结果
B:电流刺激前后的荧光强度曲线图
研究者们用支持向量机 (SVM) 和随机森林模型 (RF) 两个模型分别进行了训练和分析。
SVM 模型可以基于复杂非线性的特征将结果分为两类,并将训练得到的边界条件运用到测试数据中。RF 模型由多个决策树组成,每个决策树做出的决策最终被整理在一起,得到最终的输出结果。
RF 模型可以对结果中的变量进行全面解读,保证准确的预测,通过随机选择数据和特征,降低了决策树模型对于原始训练数据的敏感性,同时提高了决策树之间的差异性。
两种模型所需的训练数据量较小,而且可以将结果分别两类,与本研究的目的相匹配。
图 5:机器学习的工作流
Data Set A 及 Data Set B:分别代表不同电流刺激或是不同脑区的多巴胺释放浓度
两种模型训练完毕后,将不同电流刺激下得到的荧光强度曲线作为输入量,模型就可以对受到的刺激强度和多巴胺释放的脑区进行判断。
图 6:机器学习对不同刺激强度的判断结果
图 A:对 4 周龄小鼠的判断结果
图 B:对 8.5 周龄小鼠的判断结果
图 C:对 12 周龄小鼠的判断结果
结果中可以看到,随着小鼠周龄的增加,两种模型对于刺激强度的判断准确率不断增加。这主要是因为,随着小鼠周龄增加,其体内激素水平逐渐稳定,易于预测。在 12 周龄的小鼠上,RF 模型对刺激强度的判断准确率可达0.832。
图 7:0.3 mA 电流刺激下,机器学习对多巴胺释放脑区的判断准确率(左)以及不同特征对判断准确率的重要性(右)
A&B:对 4 周龄小鼠的判断结果
C&D:对 8.5 周龄小鼠的判断结果
E&F:对 12 周龄小鼠的判断结果
图中可以看出,与刺激强度的结果类似,机器学习在 12 周龄的小鼠上有着最高的判断准确率,最高可达 0.708。同时,不同的输入特征也会对模型的判断准确率产生影响。不同特征参数当中,ROI 对于模型的判断准确率最为重要。
通过机器学习,研究者打破了传统数据分析的禁锢,选用了大量特征变量,并通过传统数据分析所忽视的特征 ROI 提高了模型的判断准确率。此外,这一模型还可以推广利用于多巴胺之外的神经环路,为神经成像与神经机制的研究提供新思路。
多巴胺:快乐与失落的双刃剑
多巴胺能为我们带来愉悦的感受,并促使我们追寻快乐的事物。无论是可口的食物,绚丽的风景,适当的运动还是积极的社交,都有助于多巴胺的释放,从而帮助我们保持好心情。正因为此,多巴胺也可以作为商家的一种营销手段。从包装精美的「多巴胺餐饮」到席卷社媒的「多巴胺穿搭」,亮丽的色彩不仅点缀了人们的生活,也点亮了人们的心情。
图 8:UP 主「康康和爷爷」的多巴胺穿搭
然而,快乐之后,体内的多巴胺水平会暂时跌落至正常水平以下,反而会带来沮丧感。多巴胺长期频繁分泌后,人体对快乐的感知会变得迟钝,使人难以体会到生活中点点滴滴的美好,更容易变得失落。因此,也有人提出了「多巴胺戒断」的理念,通过调整作息,控制娱乐时间,远离社交媒体等方式,控制体内多巴胺的释放,从而回归生活,体会到真正的快乐。
无论是「多巴胺穿搭」还是「多巴胺戒断」,大家都在追寻生活中的美好,使自己快乐生活。两种理论虽然有一定的生理学依据,但实际效果仍有待研究。在 AI 的帮助下,科研工作者们也在不断地挖掘神经活动背后的机制,探究多巴胺的奥秘。相信有一天,当被问及「你有多快乐」的时候,人们能够毫不犹豫地回答说,100%。
本文首发于 HyperAI 超神经微信公众平台。
参考文章:
[1]www.nature.com/articles/s4...
[2]www.sciencedirect.com/science/art...