tensorflow / tensorflow-gpu cuda cudNN tensorRT 安装,启用显卡加速

tensorflow / tensorflow-gpu cuda cudNN tensorRT 安装,启用显卡加速

说明

Tensorflow-GPU 已被移除。请安装 tensorflow 。 tensorflow 通过 Nvidia CUDA 支持 GPU 加速操作。

自 2019 年 9月发布 的 TensorFlow2.1 以来,tensorFlow 和 tensorflow-GPU 一直是同一个包 。尽管校验和因元数据而异, 但它们以相同的方式构建,并且都通过Nvidia CUDA提供GPU支持。截至2022年12月,tensorflow-gpu已被移除,并已被这个新的空包所取代(https://pypi.org/project/tensorflow-gpu/),该包在安装时产生错误。

所有现有版本的 tensorflow-gpu 仍然可用,但 TensorFlow 团队已停止发布任何新的 tensorflow-gpu 包,并且 不会为现有的 TensorFlow-GPU 版本发布任何补丁。

所以大家直接安装 tensorflow ,安装好 NVIDIA 显卡驱动、CUDA 、CUDNN 、tensorRT 就可以启用GPU加速
没有特别的必要安装 Tensorflow-GPU这个包!!!

tensorflow-gpu 版本对应关系

tensorflow-gpu 版本对应关系 https://tensorflow.google.cn/install/source#gpu

安装方式

方式1 ,直接安装在系统上

这种方式只能安装一个版本

方式2,安装在虚拟环境中

可以安装多个虚拟环境对应LIB层不同版本,如图LIB层可以根据 tensorflow-gpu 版本对应关系选择,互不影响

1 安装nvidia显卡驱动

GPU计算能力 : https://developer.nvidia.com/cuda-gpus

GPU计算能力 > 3.5

驱动下载 :https://www.nvidia.com/Download/index.aspx

2 CUDA 安装

安装文档 https://docs.nvidia.com/cuda/

linux 安装文档 :https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html

win 安装文档 : https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html

CUDA 各版本下载地址 : https://developer.nvidia.com/cuda-toolkit-archive

3 cudNN 安装

安装文档 : https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html

cudNN各版本下载地址 :https://developer.nvidia.com/rdp/cudnn-archive

4 tensorRT 安装

安装文档 https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html

各版本下载地址:https://developer.nvidia.com/tensorrt-download

5.1 tensorflow-gpu 安装

阿里源镜像: https://mirrors.aliyun.com/pypi/simple/tensorflow-gpu/

清华源镜像:https://pypi.tuna.tsinghua.edu.cn/simple/tensorflow-gpu/

5.2 或者 tensorflow 安装

阿里源镜像: https://mirrors.aliyun.com/pypi/simple/tensorflow/

清华源镜像:https://pypi.tuna.tsinghua.edu.cn/simple/tensorflow/

5.3 官方 conda 安装 tensorflow ,支持 cpu 和 gpu

linux 步骤: https://tensorflow.google.cn/install/pip#linux

win 步骤 : https://tensorflow.google.cn/install/pip#windows-native

conda 配置私有环境变量:

bash 复制代码
# CONDA_PREFIX 是当前conda 环境的路径 
mkdir -p $CONDA_PREFIX/etc/conda/activate.d

$CONDA_PREFIX/etc/conda/activate.d 路径下新建文件 env_vars.sh

添加以下内容:其中 安装路径 是自己的系统cuda cudnn tensorrt安装路径

bash 复制代码
echo " conda active export cuda cudnn tensorrt "
### cuda
export cuda_LIB_PATH=/安装路径/cudatoolkit-11.8.0/lib/
### cudnn
export CUDNN_LIB_PATH=/安装路径/cudnn-8.9.2.26-cuda11_0/lib/

# tensorRT
export tensorRT_PATH=/安装路径/TensorRT-8.6.1.6/lib

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$cuda_LIB_PATH:$CUDNN_LIB_PATH:$tensorRT_PATH
相关推荐
小雷FansUnion1 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周1 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
思则变2 小时前
[Pytest] [Part 2]增加 log功能
开发语言·python·pytest
叶子爱分享2 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜2 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿3 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程
张较瘦_3 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习
cver1233 小时前
野生动物检测数据集介绍-5,138张图片 野生动物保护监测 智能狩猎相机系统 生态研究与调查
人工智能·pytorch·深度学习·目标检测·计算机视觉·目标跟踪
漫谈网络3 小时前
WebSocket 在前后端的完整使用流程
javascript·python·websocket
学技术的大胜嗷3 小时前
离线迁移 Conda 环境到 Windows 服务器:用 conda-pack 摆脱硬路径限制
人工智能·深度学习·yolo·目标检测·机器学习