商城-学习整理-高级-全文检索-ES(九)

目录

一、ES简介

1、网址

https://www.elastic.co/cn/what-is/elasticsearch

Elastic 的底层是开源库 Lucene。但是,你没法直接用 Lucene,必须自己写代码去调用它的接口。Elastic 是 Lucene 的封装,提供了 REST API 的操作接口,开箱即用。

REST API:天然的跨平台。

官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html

官方中文:https://www.elastic.co/guide/cn/elasticsearch/guide/current/foreword_id.html

社区中文:

https://es.xiaoleilu.com/index.html

http://doc.codingdict.com/elasticsearch/0/

开源的 Elasticsearch 是目前全文搜索引擎的首选。

它可以快速地储存、搜索和分析海量数据

2、基本概念

1、Index(索引)

动词,相当于 MySQL 中的 insert;

名词,相当于 MySQL 中的 Database

2、Type(类型)

在 Index(索引)中,可以定义一个或多个类型。

类似于 MySQL 中的 Table;每一种类型的数据放在一起;

3、Document(文档)

保存在某个索引(Index)下,某种类型(Type)的一个数据(Document),文档是 JSON 格式的,Document 就像是 MySQL 中的某个 Table 里面的内容;

4、倒排索引机制

4.1 正向索引和倒排索引

正向索引与倒排索引,这是在搜索领域中非常重要的两个名词,正向索引通常用于数据库中,在搜索引擎领域使用的最多的就是倒排索引,我们根据如下两个网页来对这两个概念进行阐述:
html1
我爱我的祖国,我爱编程
html2
我爱编程,我是个快乐的小码农

4.2 正向索引

假设我们使用mysql的全文检索,会对如上两句话分别进行分词处理,那么预计得到的结果如下:

我 爱 爱我 祖国 我的祖国 编程 爱编程 我爱编程

我 我爱 爱 编程 爱编程 我爱编程 快乐 码农 小码农

假设我们现在使用正向索引搜索 编程 这个词,那么会到第一句话中去查找是否包含有 编程 这个关键词,如果有则加入到结果集中;第二句话也是如此。假设现在有成千上百个网页,每个网页非常非常的分词,那么搜索的效率将会非常非常低些。

4.3 倒排索引

倒排索引是按照分词与文档进行映射,我们来看看如果按照倒排索引的效果:

如果采用倒排索引的方式搜索 编程 这个词,那么会直接找到关键词中查找到 编程 ,然后查找到对应的文档,这就是所谓的倒排索引。

3、相关软件及下载地址

Elasticsearch: https://www.elastic.co/cn/start

Kibana: https://www.elastic.co/cn/start

Logstash: https://www.elastic.co/cn/downloads/logstash

3.1 Kibana简介

Kibana是世界上最受欢迎的开源日志分析平台ELK Stack中的"K" ,它为用户提供了一个工具,用于在存储于Elasticsearch集群中的日志数据进行检索,可视化和构建仪表板。

Kibana的核心功能是数据查询和分析。使用各种方法,用户可以搜索Elasticsearch中索引的数据,以查找其数据中的特定事件或字符串,以进行根本原因分析和诊断。基于这些查询,用户可以使用Kibana的可视化功能,允许用户使用图表,表格,地理图和其他类型的可视化以各种不同的方式可视化数据。

3.2 logstash简介

Logstash是一个开源的服务器端数据处理管道,可以同时从多个数据源获取数据,并对其进行转换,然后将其发送到你最喜欢的"存储"。创建于2009年,于2013年被elasticsearch收购。

二、Docker安装ES

1、下载镜像文件

docker pull elasticsearch:7.4.2 存储和检索数据

docker pull kibana:7.4.2 可视化检索数据

2、创建实例

1、ElasticSearch

powershell 复制代码
mkdir -p /mydata/elasticsearch/config
mkdir -p /mydata/elasticsearch/data
echo "http.host: 0.0.0.0" >> /mydata/elasticsearch/config/elasticsearch.yml
chmod -R 777 /mydata/elasticsearch/ 保证权限
docker run --name elasticsearch -p 9200:9200 -p 9300:9300 \
-e "discovery.type=single-node" \
-e ES_JAVA_OPTS="-Xms64m -Xmx512m" \
-v /mydata/elasticsearch/config/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml \
-v /mydata/elasticsearch/data:/usr/share/elasticsearch/data \
-v /mydata/elasticsearch/plugins:/usr/share/elasticsearch/plugins \
-d elasticsearch:7.4.2






以后再外面装好插件重启即可;

特别注意:

-e ES_JAVA_OPTS="-Xms64m -Xmx256m" \ 测试环境下,设置 ES 的初始内存和最大内存,否则导致过大启动不了 ES,生产环境也需要指定一下初始内存和最大内容,要不然会全部占用服务器的内存。

/mydata/elasticsearch 下面的权限必须设置为777,要不然会启动失败。

如果启动失败可以看下日志:docker logs CONTAINER ID

2、Kibana

powershell 复制代码
docker run --name kibana -e ELASTICSEARCH_HOSTS=http://192.168.56.10:9200 -p 5601:5601 \
-d kibana:7.4.2

http://192.168.56.10:9200 一定改为自己虚拟机的地址


三、初步检索

1、_cat

GET /_cat/nodes:查看所有节点

GET /_cat/health:查看 es 健康状况

GET /_cat/master:查看主节点

GET /_cat/indices:查看所有索引 show databases;



2、索引一个文档(保存)

保存一个数据,保存在哪个索引的哪个类型下,指定用哪个唯一标识

PUT customer/external/1;在 customer 索引下的 external 类型下保存 1 号数据为

java 复制代码
PUT customer/external/1
{ "name": "John Doe"
}

PUT 和 POST 都可以,

POST 新增。如果不指定 id,会自动生成 id。指定 id 就会修改这个数据,并新增版本号。

PUT 可以新增可以修改。PUT 必须指定 id;由于 PUT 需要指定 id,我们一般都用来做修改操作,不指定 id 会报错。

3、查询文档

java 复制代码
GET customer/external/1
结果:
{ "_index": "customer", //在哪个索引
"_type": "external", //在哪个类型
"_id": "1", //记录 id
"_version": 2, //版本号
"_seq_no": 1, //并发控制字段,每次更新就会+1,用来做乐观锁
"_primary_term": 1, //同上,主分片重新分配,如重启,就会变化
"found": true, "_source": { //真正的内容
"name": "John Doe"
}
}

更新携带 ?if_seq_no=0&if_primary_term=1

4、更新文档

java 复制代码
POST customer/external/1/_update
{ "doc":{ "name": "John Doew"
}
}
或者
POST customer/external/1
{ "name": "John Doe2"
}
或者
PUT customer/external/1
{ "name": "John Doe"
}

 不同:POST 操作会对比源文档数据,如果相同不会有什么操作,文档 version 不增加

PUT 操作总会将数据重新保存并增加 version 版本;

带_update 对比元数据如果一样就不进行任何操作。

看场景;

对于大并发更新,不带 update;

对于大并发查询偶尔更新,带 update;对比更新,重新计算分配规则。

 更新同时增加属性

POST customer/external/1/_update

{ "doc": { "name": "Jane Doe", "age": 20 }

}

PUT 和 POST 不带_update 也可以。

5、删除文档&索引

java 复制代码
DELETE customer/external/1
DELETE customer

6、bulk 批量 API

java 复制代码
POST customer/external/_bulk
{"index":{"_id":"1"}}
{"name": "John Doe" }
{"index":{"_id":"2"}}
{"name": "Jane Doe" }
语法格式:
{ action: { metadata }}\n
{ request body }\n
{ action: { metadata }}\n
{ request body }\n
复杂实例:
POST /_bulk
{ "delete": { "_index": "website", "_type": "blog", "_id": "123" }}
{ "create": { "_index": "website", "_type": "blog", "_id": "123" }}
{ "title": "My first blog post" }
{ "index": { "_index": "website", "_type": "blog" }}
{ "title": "My second blog post" }
{ "update": { "_index": "website", "_type": "blog", "_id": "123", "_retry_on_conflict" : 3} }
{ "doc" : {"title" : "My updated blog post"} }


bulk API 以此按顺序执行所有的 action(动作)。如果一个单个的动作因任何原因而失败,它将继续处理它后面剩余的动作。当 bulk API 返回时,它将提供每个动作的状态(与发送的顺序相同),所以您可以检查是否一个指定的动作是不是失败了。

7、样本测试数据

我准备了一份顾客银行账户信息的虚构的 JSON 文档样本。每个文档都有下列的 schema(模式):

java 复制代码
{ "account_number": 0, "balance": 16623, "firstname": "Bradshaw", "lastname": "Mckenzie", "age": 29, "gender": "F", "address": "244 Columbus Place", "employer": "Euron", "email": "bradshawmckenzie@euron.com", "city": "Hobucken", "state": "CO"
}

https://github.com/elastic/elasticsearch/blob/master/docs/src/test/resources/accounts.json?raw=true 导入测试数据

POST bank/account/_bulk

测试数据

四、进阶检索

1、SearchAPI

ES 支持两种基本方式检索 :

 一个是通过使用 REST request URI 发送搜索参数(uri+检索参数)

 另一个是通过使用 REST request body 来发送它们(uri+请求体)

1)、检索信息

 一切检索从_search 开始

GET bank/_search 检索 bank 下所有信息,包括 type 和 docs

GET bank/_search?q=*&sort=account_number:asc 请求参数方式检索

响应结果解释:

took - Elasticsearch 执行搜索的时间(毫秒)

time_out - 告诉我们搜索是否超时

_shards - 告诉我们多少个分片被搜索了,以及统计了成功/失败的搜索分片

hits - 搜索结果

hits.total - 搜索结果

hits.hits - 实际的搜索结果数组(默认为前 10 的文档)

sort - 结果的排序 key(键)(没有则按 score 排序)

score 和 max_score --相关性得分和最高得分(全文检索用)

 uri+请求体进行检索

java 复制代码
GET bank/_search
{ "query": { "match_all": {}
},"sort": [
{ "account_number": { "order": "desc"
}
}
]
}

HTTP 客户端工具(POSTMAN),get 请求不能携带请求体,我们变为 post 也是一样的我们 POST 一个 JSON 风格的查询请求体到 _search API。

需要了解,一旦搜索的结果被返回,Elasticsearch 就完成了这次请求,并且不会维护任何服务端的资源或者结果的 cursor(游标).

2、Query DSL((domain-specific language 领域特定语言)

1)、基本语法格式

Elasticsearch 提供了一个可以执行查询的 Json 风格的 DSL(domain-specific language 领域特定语言)。这个被称为 Query DSL。该查询语言非常全面,并且刚开始的时候感觉有点复杂,真正学好它的方法是从一些基础的示例开始的。

 一个查询语句 的典型结构

java 复制代码
{
QUERY_NAME: {
ARGUMENT: VALUE, ARGUMENT: VALUE,... }
}
 如果是针对某个字段,那么它的结构如下:
{
QUERY_NAME: {
FIELD_NAME: {
ARGUMENT: VALUE, ARGUMENT: VALUE,... }
}
}
java 复制代码
GET bank/_search
{ "query": { "match_all": {}
},"from": 0, "size": 5, "sort": [
{ "account_number": { "order": "desc"
}
}
]
}

 query 定义如何查询,

 match_all 查询类型【代表查询所有的所有】,es 中可以在 query 中组合非常多的查

询类型完成复杂查询

 除了 query 参数之外,我们也可以传递其它的参数以改变查询结果。如 sort,size

 from+size 限定,完成分页功能

 sort 排序,多字段排序,会在前序字段相等时后续字段内部排序,否则以前序为准

2)、返回部分字段

java 复制代码
GET bank/_search
{ "query": {
"match_all": {}
},"from": 0, "size": 5, "_source": ["age","balance"]
}

3)、match【匹配查询】

 基本类型(非字符串),精确匹配

java 复制代码
GET bank/_search
{ "query": { "match": { "account_number": "20"
}
}
}
match 返回 account_number=20 的

 字符串,全文检索

java 复制代码
GET bank/_search
{ "query": { "match": { "address": "mill"
}
}
}
最终查询出 address 中包含 mill 单词的所有记录
match 当搜索字符串类型的时候,会进行全文检索,并且每条记录有相关性得分。

 字符串,多个单词(分词+全文检索)

java 复制代码
GET bank/_search
{ "query": { "match": { "address": "mill road"
}
}
}
最终查询出 address 中包含 mill 或者 road 或者 mill road 的所有记录,并给出相关性得分

4)、match_phrase【短语匹配】

将需要匹配的值当成一个整体单词(不分词)进行检索

java 复制代码
GET bank/_search
{ "query": { "match_phrase": { "address": "mill road"
}
}
}
查出 address 中包含 mill road 的所有记录,并给出相关性得分

5)、multi_match【多字段匹配】

java 复制代码
GET bank/_search
{ "query": { "multi_match": { "query": "mill", "fields": ["state","address"]
}
}
}
state 或者 address 包含 mill

6)、bool【复合查询】

bool 用来做复合查询:

复合语句可以合并 任何 其它查询语句,包括复合语句,了解这一点是很重要的。这就意味着,复合语句之间可以互相嵌套,可以表达非常复杂的逻辑。

java 复制代码
 must:必须达到 must 列举的所有条件
GET bank/_search
{ "query": { "bool": { "must": [
{ "match": { "address": "mill" } },
{ "match": { "gender": "M" } }
]
}
}
}
java 复制代码
 should:应该达到 should 列举的条件,如果达到会增加相关文档的评分,并不会改变
查询的结果。如果 query 中只有 should 且只有一种匹配规则,那么 should 的条件就会
被作为默认匹配条件而去改变查询结果
GET bank/_search
{ "query": { "bool": { "must": [
{ "match": { "address": "mill" } }, { "match": { "gender": "M" } }
],"should": [
{"match": { "address": "lane" }}
]
}
}
}
java 复制代码
 must_not 必须不是指定的情况
GET bank/_search
{ "query": { "bool": { "must": [
{ "match": { "address": "mill" } }, { "match": { "gender": "M" } }
],"should": [
{"match": { "address": "lane" }}
],"must_not": [
{"match": { "email": "baluba.com" }}
]
}
}
}
address 包含 mill,并且 gender 是 M,如果 address 里面有 lane 最好不过,但是 email 必
须不包含 baluba.com

7)、filter【结果过滤】

java 复制代码
并不是所有的查询都需要产生分数,特别是那些仅用于 "filtering"(过滤)的文档。为了不
计算分数 Elasticsearch 会自动检查场景并且优化查询的执行。
GET bank/_search
{ "query": { "bool": { "must": [
{"match": { "address": "mill"}}
],"filter": { "range": { "balance": { "gte": 10000, "lte": 20000
}
}
}
}
}
}

8)、term

和 match 一样。匹配某个属性的值。全文检索字段用 match,其他非 text 字段匹配用 term。

java 复制代码
GET bank/_search
{ "query": { "bool": { "must": [
{"term": { "age": { "value": "28"
}
}}, {"match": { "address": "990 Mill Road"
}}
]
}
}
}

9)、aggregations(执行聚合)

聚合提供了从数据中分组和提取数据的能力。最简单的聚合方法大致等于 SQL GROUP BY 和 SQL 聚合函数。在 Elasticsearch 中,您有执行搜索返回 hits(命中结果),并且同时返回聚合结果,把一个响应中的所有 hits(命中结果)分隔开的能力。这是非常强大且有效的,

您可以执行查询和多个聚合,并且在一次使用中得到各自的(任何一个的)返回结果,使用一次简洁和简化的 API 来避免网络往返。

java 复制代码
 搜索 address 中包含 mill 的所有人的年龄分布以及平均年龄,但不显示这些人的详情。
GET bank/_search
{ "query": { "match": { "address": "mill"
}
},"aggs": { "group_by_state": { "terms": { "field": "age"
}
},"avg_age": { "avg": {
"field": "age"
}
}
},"size": 0
}
size:0 不显示搜索数据
aggs:执行聚合。聚合语法如下
"aggs": { "aggs_name 这次聚合的名字,方便展示在结果集中": { "AGG_TYPE 聚合的类型(avg,term,terms)": {}
}
},
java 复制代码
复杂:
按照年龄聚合,并且请求这些年龄段的这些人的平均薪资
GET bank/account/_search
{ "query": { "match_all": {}
},"aggs": { "age_avg": { "terms": { "field": "age", "size": 1000
},"aggs": { "banlances_avg": { "avg": { "field": "balance"
}
}
}
}
}
,"size": 1000
}
java 复制代码
复杂:查出所有年龄分布,并且这些年龄段中 M 的平均薪资和 F 的平均薪资以及这个年龄
段的总体平均薪资
GET bank/account/_search
{ "query": { "match_all": {}
},"aggs": { "age_agg": { "terms": { "field": "age", "size": 100
},"aggs": { "gender_agg": { "terms": { "field": "gender.keyword", "size": 100
},"aggs": { "balance_avg": { "avg": { "field": "balance"
}
}
}
},"balance_avg":{ "avg": { "field": "balance"
}
}
}
}
}
,"size": 1000
}

3、Mapping

1)、字段类型




2)、映射

Mapping(映射)

Mapping 是用来定义一个文档(document),以及它所包含的属性(field)是如何存储和索引的。比如,使用 mapping 来定义:

 哪些字符串属性应该被看做全文本属性(full text fields)。

 哪些属性包含数字,日期或者地理位置。

 文档中的所有属性是否都能被索引(_all 配置)。

 日期的格式。

 自定义映射规则来执行动态添加属性。

 查看 mapping 信息:

GET bank/_mapping

 修改 mapping 信息

https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html

3)、新版本改变

Es7 及以上移除了 type 的概念。

 关系型数据库中两个数据表示是独立的,即使他们里面有相同名称的列也不影响使用,

但 ES 中不是这样的。elasticsearch 是基于 Lucene 开发的搜索引擎,而 ES 中不同 type

下名称相同的 filed 最终在 Lucene 中的处理方式是一样的。

 两个不同 type 下的两个 user_name,在 ES 同一个索引下其实被认为是同一个 filed,你必须在两个不同的 type 中定义相同的 filed 映射。否则,不同 type 中的相同字段名称就会在处理中出现冲突的情况,导致 Lucene 处理效率下降。

 去掉 type 就是为了提高 ES 处理数据的效率。

Elasticsearch 7.x

 URL 中的 type 参数为可选。比如,索引一个文档不再要求提供文档类型。

Elasticsearch 8.x

 不再支持 URL 中的 type 参数。

解决:

1)、将索引从多类型迁移到单类型,每种类型文档一个独立索引

2)、将已存在的索引下的类型数据,全部迁移到指定位置即可。详见数据迁移

java 复制代码
1、创建映射
1、创建索引并指定映射
PUT /my-index
{ "mappings": { "properties": {
"age": { "type": "integer" }, "email": { "type": "keyword" }, "name": { "type": "text" }
}
}
}
java 复制代码
2、添加新的字段映射
PUT /my-index/_mapping
{ "properties": { "employee-id": { "type": "keyword", "index": false
}
}
}

3、更新映射

对于已经存在的映射字段,我们不能更新。更新必须创建新的索引进行数据迁移

java 复制代码
4、数据迁移
先创建出 new_twitter 的正确映射。然后使用如下方式进行数据迁移
POST _reindex [固定写法]
{ "source": { "index": "twitter"
},"dest": { "index": "new_twitter"
}
}
将旧索引的 type 下的数据进行迁移
POST _reindex
{ "source": {
"index": "twitter", "type": "tweet"
},"dest": { "index": "tweets"
}
}

4、分词

一个 tokenizer(分词器)接收一个字符流,将之分割为独立的 tokens(词元,通常是独立的单词),然后输出 tokens 流。

例如,whitespace tokenizer 遇到空白字符时分割文本。它会将文本 "Quick brown fox!" 分割为 [Quick, brown, fox!]。

该 tokenizer(分词器)还负责记录各个 term(词条)的顺序或 position 位置(用于 phrase 短语和 word proximity 词近邻查询),以及 term(词条)所代表的原始 word(单词)的 start(起始)和 end(结束)的 character offsets(字符偏移量)(用于高亮显示搜索的内容)。

Elasticsearch 提供了很多内置的分词器,可以用来构建 custom analyzers(自定义分词器)。

1)、安装 ik 分词器

注意:不能用默认 elasticsearch-plugin install xxx.zip 进行自动安装

https://github.com/medcl/elasticsearch-analysis-ik/releases?after=v6.4.2 对应 es 版本安装

powershell 复制代码
进入 es 容器内部 plugins 目录
docker exec -it 容器 id /bin/bash
wget
https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.4.2/elasticsearch-anal
ysis-ik-7.4.2.zip
unzip 下载的文件
rm --rf *.zip
mv elasticsearch/ ik
可以确认是否安装好了分词器
cd ../bin
elasticsearch plugin list:即可列出系统的分词器


因为容器里面只有核心的软件,因此没有wget,可以直接去外面的安装wget,在外面下载wget,最好不要在容器里面下载,增加容器内容。

powershell 复制代码
yum install wget

在外面解压好上传上去

容器一旦启动,最好不要删除里面的挂载目录,要不然就需要重启容器重新挂载一下目录。

安装好分词器后,需要重新启动一下容器,加载插件。

powershell 复制代码
docker restart elasticsearch

2)、测试分词器

java 复制代码
使用默认
POST _analyze
{ "text": "我是中国人"
}
请观察结果
使用分词器
POST _analyze
{ "analyzer": "ik_smart", "text": "我是中国人"
}
请观察结果
另外一个分词器
ik_max_word
POST _analyze
{ "analyzer": "ik_max_word", "text": "我是中国人"
}

请观察结果

能够看出不同的分词器,分词有明显的区别,所以以后定义一个索引不能再使用默认的 mapping 了,要手工建立 mapping, 因为要选择分词器。


3)、调整虚拟机内存大小

1、关闭虚拟机

2、打开设置里面的系统,调到3G。

3、然后无界面启动虚拟机,再启动容器。

4)、安装nginx

先在mydata下面创建nginx目录,以后所有的nginx文件都放到这个目录下面

 随便启动一个 nginx 实例,只是为了复制出配置

powershell 复制代码
 docker run -p 80:80 --name nginx -d nginx:1.10

本地没有找到镜像会自动下载并启动

 将容器内的配置文件拷贝到当前目录(别忘了后面的点):

powershell 复制代码
docker container cp nginx:/etc/nginx .  

nginx容器下的/etc/nginx目录下的文件 拷贝到刚才创建的nginx文件夹下

 修改文件名称:mv nginx conf

把这个 conf 移动到/mydata/nginx 下

 终止原容器:docker stop nginx

 执行命令删除原容器:docker rm $ContainerId

 创建新的 nginx;执行以下命令

powershell 复制代码
docker run -p 80:80 --name nginx \
-v /mydata/nginx/html:/usr/share/nginx/html \
-v /mydata/nginx/logs:/var/log/nginx \
-v /mydata/nginx/conf:/etc/nginx \
-d nginx:1.10




去nginx外部挂载目录,html下,创建index.html,编写html页面,请求就能够默认展示,说明nginx是ok的。(nginx会自动默认访问html文件夹下面的内容,默认访问index.html页面,因此请求http://192.168.56.10:80,就是请求http://192.168.56.10/index.html,80是默认端口含,不展示

在nginx下面的html文件夹下面创建es文件夹,有关的es文件就放到里面,给 nginx 的 html 下面放的所有资源可以直接访问;

http://192.168.56.10/es/fenci.txt

5)、自定义词库

修改/usr/share/elasticsearch/plugins/ik/config/中的 IKAnalyzer.cfg.xml

/usr/share/elasticsearch/plugins/ik/config

xml 复制代码
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<comment>IK Analyzer 扩展配置</comment>
<!--用户可以在这里配置自己的扩展字典 -->
<entry key="ext_dict"></entry>
<!--用户可以在这里配置自己的扩展停止词字典-->
<entry key="ext_stopwords"></entry>
<!--用户可以在这里配置远程扩展字典 -->
<entry key="remote_ext_dict">http://192.168.128.130/fenci/myword.txt</entry>
<!--用户可以在这里配置远程扩展停止词字典-->
<!-- <entry key="remote_ext_stopwords">words_location</entry> -->
</properties>
原来的 xml
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<comment>IK Analyzer 扩展配置</comment>
<!--用户可以在这里配置自己的扩展字典 -->
<entry key="ext_dict"></entry>
<!--用户可以在这里配置自己的扩展停止词字典-->
<entry key="ext_stopwords"></entry>
<!--用户可以在这里配置远程扩展字典 -->
<!-- <entry key="remote_ext_dict">words_location</entry> -->
<!--用户可以在这里配置远程扩展停止词字典-->
<!-- <entry key="remote_ext_stopwords">words_location</entry> -->
</properties>

按照远程扩展字典的路径利用 nginx 发布静态资源,按照请求路径,创建对应的文件夹以及文件,放在nginx 的 html 下

然后重启 es 服务器,重启 nginx。

修改es一直自动重启,这样修改配置,es就会自动重启:

powershell 复制代码
 docker update  elasticsearch --restart=always

在 kibana 中测试分词效果

更新完成后,es 只会对新增的数据用新词分词。历史数据是不会重新分词的。如果想要历史数据重新分词。需要执行:

POST my_index/_update_by_query?conflicts=proceed

五、Elasticsearch-Rest-Client

1、Rest客户端选型

1)、9300:TCP

 spring-data-elasticsearch:transport-api.jar;

 springboot 版本不同, transport-api.jar 不同,不能适配 es 版本

 7.x 已经不建议使用,8 以后就要废弃

2)、9200:HTTP

 JestClient:非官方,更新慢

 RestTemplate:模拟发 HTTP 请求,ES 很多操作需要自己封装,麻烦

 HttpClient:同上

 Elasticsearch-Rest-Client:官方 RestClient,封装了 ES 操作,API 层次分明,上手简单

最终选择 Elasticsearch-Rest-Client(elasticsearch-rest-high-level-client)

https://www.elastic.co/guide/en/elasticsearch/client/java-rest/current/java-rest-high.html

2、创建检索服务



配置服务注册和配置中心。

3、SpringBoot 整合

xml 复制代码
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-high-level-client</artifactId>
<version>7.4.2</version>
</dependency>

发现其中的依赖有6.4.3版本,因为我们是spring-boot下spring-boot-dependencies对es也做了版本管理


然后我们在子项目配置中引用的版本设置为7.4.2

刷新一下,就全部变成7.4.2了

4、配置

java 复制代码
@Bean
RestHighLevelClient client() {
RestClientBuilder builder = RestClient.builder(new HttpHost("192.168.56.10", 9200, "http"));
return new RestHighLevelClient(builder);
}


5、使用

java 复制代码
参照官方文档:
@Test
void test1() throws IOException {
Product product = new Product();
product.setSpuName("华为");
product.setId(10L);
IndexRequest request = new IndexRequest("product").id("20")
.source("spuName","华为","id",20L);
try {
IndexResponse response = client.index(request, RequestOptions.DEFAULT);
System.out.println(request.toString());
IndexResponse response2 = client.index(request, RequestOptions.DEFAULT);
} catch (ElasticsearchException e) {
if (e.status() == RestStatus.CONFLICT) {
}
}
}
相关推荐
机智的叉烧2 分钟前
前沿重器[57] | sigir24:大模型推荐系统的文本ID对齐学习
人工智能·学习·机器学习
量子-Alex1 小时前
【多模态聚类】用于无标记视频自监督学习的多模态聚类网络
学习·音视频·聚类
吉大一菜鸡1 小时前
FPGA学习(基于小梅哥Xilinx FPGA)学习笔记
笔记·学习·fpga开发
爱吃西瓜的小菜鸡4 小时前
【C语言】判断回文
c语言·学习·算法
小A1594 小时前
STM32完全学习——SPI接口的FLASH(DMA模式)
stm32·嵌入式硬件·学习
岁岁岁平安4 小时前
spring学习(spring-DI(字符串或对象引用注入、集合注入)(XML配置))
java·学习·spring·依赖注入·集合注入·基本数据类型注入·引用数据类型注入
武昌库里写JAVA4 小时前
Java成长之路(一)--SpringBoot基础学习--SpringBoot代码测试
java·开发语言·spring boot·学习·课程设计
qq_589568105 小时前
数据可视化echarts学习笔记
学习·信息可视化·echarts
兔C5 小时前
微信小程序的轮播图学习报告
学习·微信小程序·小程序
海海不掉头发6 小时前
苍穹外卖-day05redis 缓存的学习
学习·缓存