【BEV】3D视觉 PRELIMINARY

这里的知识来自于论文 Delving into the Devils of Bird's-eye-view Perception: A Review, Evaluation and Recipe 的 Appendix B.1

部分来自 这篇文章

从透视图转向鸟瞰图。(Xw、Yw、Zw)、(Xc、Yc、Zc)表示世界World坐标和相机Camera坐标, ( X i 、 Y i ) (X_i、Y_i) (Xi、Yi)、(U、V)表示图像坐标和像素坐标。由于图像坐标系和像素坐标系处于同一平面,故两者之间的差异在于坐标原点的位置和单位。像素坐标系的原点在图像坐标系的左上角,同时像素坐标系的单位为像素。

故两个坐标系之间的变换满足
u = x d x + u 0 , v = y d y + v 0 u=\frac{x}{d_x}+u_0,v=\frac{y}{d_y}+v_0 u=dxx+u0,v=dyy+v0

dx,dy表示像素坐标系中每个像素点的宽和高 ,而图像坐标系原点在像素坐标系中的横纵坐标分别为 u 0 , v 0 u_0, v_0 u0,v0。

从BEV平面上升起一根柱子。P代表柱子上的3D点, P ′ P^{'} P′代表P相应在相机视角上的投影点。

P, P ′ P^{'} P′分别对应于柱上的三维点和摄像机视图上投影的2D点。

给定P的世界坐标和相机的内在参数和外在参数,可以得到 P ′ P^{'} P′的像素坐标。

显式BEV特征构造通常需要基于三维到二维投影对局部图像视图特征进行索引。上图显示BEVFormer的视角转换。一根柱子从BEV平面升起,柱子内的一个三维点被投影到相机视图上。

投影过程涉及到世界World、相机Camera、图像Image和像素Pixel坐标系之间的转换。

从世界坐标到相机坐标的转换是一种刚性变换,只需要平移和旋转(更详细的可以看上面的博客)。

设 P w = [ x w 、 y w 、 z w , 1 ] 、 P c = [ x c 、 y c 、 z c , 1 ] P_w = [x_w、y_w、z_w,1]、P_c = [x_c、y_c、z_c,1] Pw=[xw、yw、zw,1]、Pc=[xc、yc、zc,1]分别为一个三维点P在世界坐标和相机坐标中的同质表示。它们之间的关系可以描述如下:
R,T分别表示旋转矩阵和平移矩阵。

相关推荐
tealcwu2 小时前
【Unity踩坑】出现d3d11问题导致编辑器崩溃
3d
江_小_白8 小时前
自动驾驶之激光雷达
人工智能·机器学习·自动驾驶
前端Hardy10 小时前
纯HTML&CSS实现3D旋转地球
前端·javascript·css·3d·html
mirrornan15 小时前
什么是Web3D?有何优势?有哪些应用场景?
3d·web3·webgl·3d模型
工业3D_大熊16 小时前
3D可视化引擎HOOPS Luminate场景图详解:形状的创建、销毁与管理
java·c++·3d·docker·c#·制造·数据可视化
地平线开发者2 天前
CPU& 内存加压工具 stress-ng 介绍
算法·自动驾驶
前端Hardy2 天前
HTML&CSS:数据卡片可以这样设计
前端·javascript·css·3d·html
小彭努力中2 天前
138. CSS3DRenderer渲染HTML标签
前端·深度学习·3d·webgl·three.js
AI生成未来2 天前
斯坦福&UC伯克利开源突破性视觉场景生成与编辑技术,精准描绘3D/4D世界!
3d·3d场景·4d
清流君2 天前
【运动规划】移动机器人运动规划与轨迹优化全解析 | 经典算法总结
人工智能·笔记·算法·机器人·自动驾驶·运动规划