欧拉函数和最大公约数

分析:如果两个数的最大公约数是一个质数p,那么这两个数都除以p,得到的两个数的最大公约数一定是1.

反证法:如果得到的两个数的最大公约数不是1,那么把此时的最大公约数乘以上边的最大公约数,得到的一定比上述的最大公约数大,那么上述的最大公约数就不是最大那两个数的最大公约数,所以结论错误。即得到的两个数的最大公约数一定是1.

由于发现两个数都除以p之后,得到的数的最大公约数是1,那么我们可以想到欧拉函数,此时就可以先处理欧拉函数和欧拉函数的前缀和,然后枚举1~n的所有质数,每次求1~n/p(下取整)中与n/p(下取整)互质的个数,由于(1,2),(2,1)属于两个那么还需要乘以2,(1,1)(1,1)属于1个,最后还得减去1.

cpp 复制代码
#include<bits/stdc++.h>

using namespace std;

const int N = 1e7 + 10;

int hpi[N];
int primes[N],cnt;
bool st[N];
int n;
long long s[N];

void init()
{
    hpi[1]=1;
    
    for(int i=2;i<=n;i++)
    {
        if(!st[i]) 
        {
            primes[cnt++]=i;
            hpi[i]=i-1;
        }
        
        for(int j=0;primes[j]<=n/i;j++)
        {
            st[primes[j]*i]=true;
            if(i%primes[j]==0)
            {
                hpi[primes[j]*i]=primes[j]*hpi[i];
                break;
            }
            hpi[i*primes[j]]=hpi[i]*(primes[j]-1);
        }
    }
    
    for(int i=1;i<=n;i++) s[i]=s[i-1]+hpi[i];
}
int main()
{
    cin>>n;
    
    init();
    long long res=0;
    for(int i=0;i<cnt;i++)
    {
        int p=primes[i];
        res+=(2*s[n/p]-1);
    }
    cout<<res<<endl;
    return 0;
}
相关推荐
kaikaile199511 分钟前
MATLAB计算卫星星下点轨迹
开发语言·算法·matlab
_OP_CHEN13 分钟前
【算法基础篇】(三十一)动态规划之基础背包问题:从 01背包到完全背包,带你吃透背包问题的核心逻辑
算法·蓝桥杯·动态规划·背包问题·01背包·完全背包·acm/icpc
长安er30 分钟前
LeetCode876/141/142/143 快慢指针应用:链表中间 / 环形 / 重排问题
数据结构·算法·leetcode·链表·双指针·环形链表
Aaron158835 分钟前
电子战侦察干扰技术在反无人机领域的技术浅析
算法·fpga开发·硬件架构·硬件工程·无人机·基带工程
zhglhy1 小时前
Jaccard相似度算法原理及Java实现
java·开发语言·算法
仰泳的熊猫1 小时前
1140 Look-and-say Sequence
数据结构·c++·算法·pat考试
handuoduo12341 小时前
SITAN中avp必要性分析
人工智能·算法·机器学习
zl_vslam1 小时前
SLAM中的非线性优-3D图优化之相对位姿Between Factor右扰动(八)
人工智能·算法·计算机视觉·3d
电饭叔2 小时前
如何代码化,两点之间的距离
笔记·python·算法
TL滕2 小时前
从0开始学算法——第十三天(Rabin-Karp 算法练习)
笔记·学习·算法·哈希算法