NeuralNLP-NeuralClassifier的使用记录(二),训练预测自己的【中文文本多分类】

NeuralNLP-NeuralClassifier的使用记录,训练预测自己的【中文文本多分类】

数据准备:

​ 与英文的训练预测一致,都使用相同的数据格式,将数据通过代码处理为JSON格式,以下是我使用的一种,不同的原数据情况会有所改动:

复制代码
import jieba.analyse as ana
import re
import jieba

def make_data_json(df,outpath):
    def stop_words(path):
        txt = open(outpath,"r",encoding='utf-8') 
        lines = txt.readlines()
        txt.close()
        stop_txt = []
        for line in lines:
            stop_txt.append(line.strip('\n'))
        return stop_txt
    
    
    with open(outpath, "w+", encoding='utf-8') as f:
        
        # with open(output_path, "w") as fw:
        for indexs in df.index:
            dict1 = {}
            dict1['doc_label'] = [str(df.loc[indexs].values[0])]
            doc_token = df.loc[indexs].values[1]
            # 只保留中文、大小写字母和阿拉伯数字
            reg = "[^0-9A-Za-z\u4e00-\u9fa5]"
            doc_token = re.sub(reg, '', doc_token)
            print(doc_token)
            # 中文分词
            seg_list = jieba.cut(doc_token, cut_all=False)
            #$提取关键词,20个:
            ana.set_stop_words('./人工智能挑战赛-文本分类/停用词列表.txt')
            keyword = ana.extract_tags(doc_token, topK=20,withWeight=False,)   #True表示显示权重
            # 去除停用词
            content = [x for x in seg_list if x not in stop_words('../data/stop_words.txt')]
            dict1['doc_token'] = content
            dict1['doc_keyword'] = keyword
            dict1['doc_topic'] = []
            # 组合成字典
            print(dict1)
            # 将字典转化成字符串
            json_str = json.dumps(dict1, ensure_ascii=False)
            f.write('%s\n' % json_str)

使用构造JSON数据方法:

训练前期准备:

1、创建中文数据文件夹,Chinese_datas,

2、创建该数据的文本数据对应的标签集Chinese_label.taxonomy

3、创建该数据的训练配置文件Chinese_train_conf.json,

继续目录如下:

配置文件的注意点:

其中需要额外修改的地方:

work_nums=0

以及涉及代码中,有读取文件的部分都需要给编码中文编码:

with open(encoding='utf-8')

训练:

训练代码:

复制代码
python train.py conf/Chinese_train_conf.json

训练后生成的权重文件,在配置文件中就写出了:

预测:

复制代码
python predict.py conf/Chinese_train_conf.json Chinese_datas/predict_data.json

预测结果:

可以看出预测效果仅一个错误,该模型方便NLP的比赛分类等,准确率也很高。

代码获取:

下载就是中文分类版,在命令界面进行命令行输入,训练和预测,:

链接:https://pan.baidu.com/s/1fw_ipmOFWMiTLAFrs9i5ig

提取码:2023

相关推荐
JEECG低代码平台14 分钟前
GitHub 十大 Java 语言 AI 开源项目推荐
java·人工智能·github
Cathyqiii27 分钟前
传统扩散模型 VS Diffusion-TS
人工智能·算法
海边夕阳200631 分钟前
【每天一个AI小知识】:什么是逻辑回归?
人工智能·算法·逻辑回归
非著名架构师1 小时前
团雾、结冰、大风——高速公路的“隐形杀手”:智慧气象预警如何为您的路网安全保驾护航
人工智能·新能源风光提高精度·疾风气象大模型4.0·疾风气象大模型·风光功率预测
Bony-1 小时前
基于深度卷积神经网络与迁移学习的动物图像分类
分类·cnn·迁移学习
IT_陈寒1 小时前
Redis深度优化:10个让你的QPS提升50%的关键配置解析
前端·人工智能·后端
2501_941142931 小时前
5G与边缘计算结合在智能物流系统中的高效调度与实时监控应用研究
人工智能
2501_941144421 小时前
边缘计算与人工智能在智能制造生产线优化与故障预测中的应用研究
人工智能·边缘计算·制造
三寸3371 小时前
硬刚GPT 5.1,Grok 4.1来了,所有用户免费使用!
人工智能·ai·ai编程
苍何2 小时前
Gemini3 强势来袭,这次前端真的死了。。。
人工智能