NeuralNLP-NeuralClassifier的使用记录(二),训练预测自己的【中文文本多分类】

NeuralNLP-NeuralClassifier的使用记录,训练预测自己的【中文文本多分类】

数据准备:

​ 与英文的训练预测一致,都使用相同的数据格式,将数据通过代码处理为JSON格式,以下是我使用的一种,不同的原数据情况会有所改动:

复制代码
import jieba.analyse as ana
import re
import jieba

def make_data_json(df,outpath):
    def stop_words(path):
        txt = open(outpath,"r",encoding='utf-8') 
        lines = txt.readlines()
        txt.close()
        stop_txt = []
        for line in lines:
            stop_txt.append(line.strip('\n'))
        return stop_txt
    
    
    with open(outpath, "w+", encoding='utf-8') as f:
        
        # with open(output_path, "w") as fw:
        for indexs in df.index:
            dict1 = {}
            dict1['doc_label'] = [str(df.loc[indexs].values[0])]
            doc_token = df.loc[indexs].values[1]
            # 只保留中文、大小写字母和阿拉伯数字
            reg = "[^0-9A-Za-z\u4e00-\u9fa5]"
            doc_token = re.sub(reg, '', doc_token)
            print(doc_token)
            # 中文分词
            seg_list = jieba.cut(doc_token, cut_all=False)
            #$提取关键词,20个:
            ana.set_stop_words('./人工智能挑战赛-文本分类/停用词列表.txt')
            keyword = ana.extract_tags(doc_token, topK=20,withWeight=False,)   #True表示显示权重
            # 去除停用词
            content = [x for x in seg_list if x not in stop_words('../data/stop_words.txt')]
            dict1['doc_token'] = content
            dict1['doc_keyword'] = keyword
            dict1['doc_topic'] = []
            # 组合成字典
            print(dict1)
            # 将字典转化成字符串
            json_str = json.dumps(dict1, ensure_ascii=False)
            f.write('%s\n' % json_str)

使用构造JSON数据方法:

训练前期准备:

1、创建中文数据文件夹,Chinese_datas,

2、创建该数据的文本数据对应的标签集Chinese_label.taxonomy

3、创建该数据的训练配置文件Chinese_train_conf.json,

继续目录如下:

配置文件的注意点:

其中需要额外修改的地方:

work_nums=0

以及涉及代码中,有读取文件的部分都需要给编码中文编码:

with open(encoding='utf-8')

训练:

训练代码:

复制代码
python train.py conf/Chinese_train_conf.json

训练后生成的权重文件,在配置文件中就写出了:

预测:

复制代码
python predict.py conf/Chinese_train_conf.json Chinese_datas/predict_data.json

预测结果:

可以看出预测效果仅一个错误,该模型方便NLP的比赛分类等,准确率也很高。

代码获取:

下载就是中文分类版,在命令界面进行命令行输入,训练和预测,:

链接:https://pan.baidu.com/s/1fw_ipmOFWMiTLAFrs9i5ig

提取码:2023

相关推荐
IT_陈寒5 分钟前
Vue3性能优化实战:我从这5个技巧中获得了40%的渲染提升
前端·人工智能·后端
DevUI团队12 分钟前
🔥Angular开发者看过来:不止于Vue,MateChat智能化UI库现已全面支持Angular!
前端·人工智能·angular.js
北京青翼科技15 分钟前
【HD200IS A2 DK 】昇腾 310B 高可靠智能计算开发套件
图像处理·人工智能·信号处理·智能硬件
智算菩萨18 分钟前
从 0 到 1 搭建 AI 智能体:从创建、知识库与提示词,到 MCP 接入和多智能体协作的全流程实践与评测
人工智能
onebound_noah24 分钟前
电商图片搜索:技术破局与商业落地,重构“视觉到交易”全链路
大数据·前端·网络·人工智能·重构·php
得贤招聘官25 分钟前
AI得贤面试智能体:重构企业招聘新范式
人工智能
SEO_juper25 分钟前
谷歌搜索全面AI化:SGE如何重构我们的搜索体验与营销格局
人工智能·ai·重构·数字营销
好多渔鱼好多25 分钟前
【音视频】AI自适应均衡器的调节精度提升方法
人工智能·音视频
昨日之日200627 分钟前
InfiniteTalk V2版 - 声音驱动图片生成高度逼真的说话/唱歌视频 支持50系显卡 ComfyUI+WebUI 一键整合包下载
人工智能·深度学习·音视频
老蒋新思维27 分钟前
破局与重构:借 “创始人 IP + AI” 开启智能商业新征程|创客匠人
网络·人工智能·网络协议·tcp/ip·重构·知识付费·创客匠人