微服务中间件--微服务保护

微服务保护

微服务保护

a.sentinel

雪崩问题

微服务调用链路中的某个服务故障,引起整个链路中的所有微服务都不可用,这就是雪崩

解决雪崩问题的常见方式有四种:

  • 超时处理:设定超时时间,请求超过一定时间没有响应就返回错误信息,不会无休止等待
  • 舱壁模式:限定每个业务能使用的线程数,避免耗尽整个tomcat的资源,因此也叫线程隔离
  • 熔断降级:由断路器 统计业务执行的异常比例,如果超出阈值则会熔断该业务,拦截访问该业务的一切请求
  • 限制业务访问的QPS(每秒处理请求的数量),避免服务因流量的突增而故障。

Sentinel是阿里巴巴开源的一款微服务流量控制组件。

微服务整合Sentinel

1.引入sentinel依赖:

xml 复制代码
<!--引入sentinel依赖-->
<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>

2.配置控制台地址:

xml 复制代码
spring:
	cloud:
		sentinel:
      		transport:
        		dashboard: localhost:8080 # sentinel控制台地址

3.访问微服务的任意端点,触发sentinel监控

b.sentinel限流规则

簇点链路

簇点链路:就是项目内的调用链路,链路中被监控的每个接口就是一个资源。默认情况下sentinel会监控SpringMVC的每一个端点(Endpoint: controller中的每一个方法),因此SpringMVC的每一个端点(Endpoint)就是调用链路中的一个资源。

需求:给 /order/{orderId}这个资源设置流控规则,QPS不能超过 5。然后利用jemeter测试。

1.设置流控规则:

2.jemeter测试:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-swU5G1Qz-1692263317692)(C:\\Users\\captaindeng\\AppData\\Roaming\\Typora\\typora-user-images\\image-20230813163248788.png)

1) 流控模式

在添加限流规则时,点击高级选项,可以选择三种流控模式:

  • 直接:统计当前资源的请求,触发阈值时对当前资源直接限流,也是默认的模式
  • 关联:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流
  • 链路:统计从指定链路访问到本资源的请求,触发阈值时,对指定链路限流

1.a) 关联模式

  • 关联模式:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流
  • 使用场景:比如用户支付时需要修改订单状态,同时用户要查询订单。查询和修改操作会争抢数据库锁,产生竞争。业务需求是优先对支付和更新订单的业务,因此当修改订单业务触发阈值时,需要对查询订单业务限流。

当/write资源访问量触发阈值时,就会对/read资源限流,避免影响/write资源。

需求:

  • 在OrderController新建两个端点:/order/query和/order/update,无需实现业务
  • 配置流控规则,当/order/ update资源被访问的QPS超过5时,对/order/query请求限流

满足下面条件可以使用关联模式:

  • 两个有竞争关系的资源
  • 一个优先级较高,一个优先级较低

1.b) 链路模式

链路模式:只针对从指定链路访问到本资源的请求做统计,判断是否超过阈值。

例如有两条请求链路:

  • /test1 -> /common
  • /test2 -> /common

如果只希望统计从/test2进入到/common的请求,则可以这样配置:

需求:

有查询订单和创建订单业务,两者都需要查询商品。针对从查询订单进入到查询商品的请求统计,并设置限流。

步骤:

  • 1.在OrderService中添加一个queryGoods方法,不用实现业务
  • 2.在OrderController中,改造/order/query端点,调用OrderService中的queryGoods方法
  • 3.在OrderController中添加一个/order/save的端点,调用OrderService的queryGoods方法
  • 4.给queryGoods设置限流规则,从/order/query进入queryGoods的方法限制QPS必须小于2

Sentinel默认只标记Controller中的方法为资源,如果要标记其它方法,需要利用@SentinelResource注解

java 复制代码
@SentinelResource("goods")
public void queryGoods(){
    System.err.println("查询商品");
}

Sentinel默认会将Controller方法做context整合,导致链路模式的流控失效,需要修改application.yml,添加配置:

xml 复制代码
spring:
	cloud:
		sentinel:
			web-context-unify: false # 关闭context整合

2) 流控效果

流控效果是指请求达到流控阈值时应该采取的措施,包括三种:

  • 快速失败:达到阈值后,新的请求会被立即拒绝并抛出FlowException异常。是默认的处理方式。
  • warm up:预热模式,对超出阈值的请求同样是拒绝并抛出异常。但这种模式阈值会动态变化,从一个较小值逐渐增加到最大阈值。
  • 排队等待:让所有的请求按照先后次序排队执行,两个请求的间隔不能小于指定时长

2.a) 预热模式

warm up也叫预热模式,是应对服务冷启动的一种方案。请求阈值初始值是 threshold / coldFactor,持续指定时长后,逐渐提高到threshold值。而coldFactor的默认值是3.

例如,我设置QPS的threshold为10,预热时间为5秒,那么初始阈值就是 10 / 3 ,也就是3,然后在5秒后逐渐增长到10.

案例:需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用warm up效果,预热时长为5秒

2.b) 排队等待

排队等待是让所有请求进入一个队列中,然后按照阈值允许的时间间隔依次执行。后来的请求必须等待前面执行完成,如果请求预期的等待时间超出最大时长,则会被拒绝。

例如:QPS = 5,意味着每200ms处理一个队列中的请求;timeout = 2000,意味着预期等待超过2000ms的请求会被拒绝并抛出异常

需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用排队的流控效果,超时时长设置为5s

3) 热点参数限流

之前的限流是统计访问某个资源的所有请求,判断是否超过QPS阈值。而热点参数限流是分别统计参数值相同的请求,判断是否超过QPS阈值。

在热点参数限流的高级选项中,可以对部分参数设置例外配置:

结合上一个配置,这里的含义是对0号的long类型参数限流,每1秒相同参数的QPS不能超过5,有两个例外:

  • 如果参数值是100,则每1秒允许的QPS为10
  • 如果参数值是101,则每1秒允许的QPS为15

案例:给/order/{orderId}这个资源添加热点参数限流,规则如下:

  • 默认的热点参数规则是每1秒请求量不超过2
  • 给102这个参数设置例外:每1秒请求量不超过4
  • 给103这个参数设置例外:每1秒请求量不超过10

热点参数限流对默认的SpringMVC资源无效,只对添加@SentinelResource注解的方法产生效果

java 复制代码
@SentinelResource("hot")
@GetMapping("{orderId}")
public Order queryOrderByUserId(@PathVariable("orderId") Long orderId) {
    // 根据id查询订单并返回
    return orderService.queryOrderById(orderId);
}

c.隔离和降级

虽然限流可以尽量避免因高并发而引起的服务故障,但服务还会因为其它原因而故障。而要将这些故障控制在一定范围,避免雪崩,就要靠线程隔离(舱壁模式)和熔断降级手段了。

不管是线程隔离还是熔断降级,都是对客户端(调用方)的保护。

1) Feign整合Sentinel

SpringCloud中,微服务调用都是通过Feign来实现的,因此做客户端保护必须整合Feign和Sentinel。

1.修改OrderService的application.yml文件,开启Feign的Sentinel功能

yaml 复制代码
feign:
  sentinel:
    enabled: true # 开启Feign的Sentinel功能

2.给FeignClient编写失败后的降级逻辑

  • 方式一:FallbackClass,无法对远程调用的异常做处理
  • 方式二:FallbackFactory,可以对远程调用的异常做处理 (推荐)

步骤一:在feing-api项目的clients.fallback中定义类,实现FallbackFactory:

java 复制代码
@Slf4j
public class UserClientFallbackFactory implements FallbackFactory<UserClient> {
    @Override
    public UserClient create(Throwable throwable) {
        return new UserClient() {
            @Override
            public User findById(Long id) {
                log.error("查询用户异常", throwable);
                return new User();
            }
        };
    }
}

步骤二:在feing-api项目中的DefaultFeignConfiguration类中将UserClientFallbackFactory注册为一个Bean:

java 复制代码
public class DefaultFeignConfiguration {
    @Bean
    public UserClientFallbackFactory userClientFallbackFactory(){
        return new UserClientFallbackFactory();
    }
}

步骤三:在feing-api项目中的UserClient接口中使用UserClientFallbackFactory:

java 复制代码
@FeignClient(value = "userservice", fallbackFactory = UserClientFallbackFactory.class)
public interface UserClient {
    @GetMapping("/user/{id}")
    User findById(@PathVariable("id") Long id);
}

2) 线程隔离

线程隔离有两种方式实现:

  • 线程池隔离
  • 信号量隔离QPS(Sentinel默认采用)

线程池隔离

  • 优点:
    • 支持主动超时
    • 支持异步调用
  • 缺点
    • 线程的额外开销比较大
  • 场景
    • 低扇出

信号量隔离

  • 优点:
    • 轻量级,无额外开销
  • 缺点:
    • 不支持主动超时
    • 不支持异步调用
  • 场景
    • 高频调用
    • 高扇出

2.a) 线程隔离(舱壁模式)

在添加限流规则时,可以选择两种阈值类型:

  • QPS:就是每秒的请求数,在快速入门中已经演示过
  • 线程数:是该资源能使用用的tomcat线程数的最大值。也就是通过限制线程数量,实现舱壁模式。

案例:给 UserClient的查询用户接口设置流控规则,线程数不能超过 2

3) 熔断降级

熔断降级是解决雪崩问题的重要手段。其思路是由断路器 统计服务调用的异常比例、慢请求比例,如果超出阈值则会熔断该服务。即拦截访问该服务的一切请求;而当服务恢复时,断路器会放行访问该服务的请求。

断路器熔断策略有三种:慢调用、异常比例、异常数

3.a) 熔断策略-慢调用

  • 慢调用:业务的响应时长(RT)大于指定时长的请求认定为慢调用请求。在指定时间内,如果请求数量超过设定的最小数量,慢调用比例大于设定的阈值,则触发熔断。例如:

解读:RT超过500ms的调用是慢调用,统计最近10000ms内的请求,如果请求量超过10次,并且慢调用比例不低于0.5,则触发熔断,熔断时长为5秒。然后进入half-open状态,放行一次请求做测试。

案例:给 UserClient的查询用户接口设置降级规则,慢调用的RT阈值为50ms,统计时间为1秒,最小请求数量为5,失败阈值比例为0.4,熔断时长为5s

提示:为了触发慢调用规则,我们需要修改UserService中的业务,增加业务耗时:

3.b) 熔断策略-异常比例、异常数

异常比例或异常数:统计指定时间内的调用,如果调用次数超过指定请求数,并且出现异常的比例达到设定的比例阈值(或超过指定异常数),则触发熔断。例如:

案例:给 UserClient的查询用户接口设置降级规则,统计时间为1秒,最小请求数量为5,失败阈值比例为0.4,熔断时长为5s

提示:为了触发异常统计,我们需要修改UserService中的业务,抛出异常:

d.授权规则及规则持久化

1) 授权规则

授权规则可以对调用方的来源做控制,有白名单和黑名单两种方式

  • 白名单:来源(origin)在白名单内的调用者允许访问
  • 黑名单:来源(origin)在黑名单内的调用者不允许访问

Sentinel是通过RequestOriginParser这个接口的parseOrigin来获取请求的来源的。

从request中获取一个名为origin的请求头,作为origin的值:

在order-service中创建sentinel包

java 复制代码
package cn.itcast.order.sentinel;

@Component
public class HeaderOriginParser implements RequestOriginParser {
    @Override
    public String parseOrigin(HttpServletRequest request) {
        // 1.获取请求头
        String origin = request.getHeader("origin");
        // 2.非空判断
        if (StringUtils.isEmpty(origin)) {
            origin = "blank";
        }
        return origin;
    }
}

在gateway服务中,利用网关的过滤器添加名为gateway的origin头:

yaml 复制代码
spring:
    gateway:
      default-filters:
        - AddRequestHeader=Truth, ABCDEFGHIJKLMN
        - AddRequestHeader=origin, gateway # 添加名为origin的请求头,值为gateway

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OUTxGg72-1692263317693)(C:\\Users\\captaindeng\\AppData\\Roaming\\Typora\\typora-user-images\\image-20230814170236972.png)

2) 自定义异常结果

默认情况下,发生限流、降级、授权拦截时,都会抛出异常到调用方。如果要自定义异常时的返回结果,需要实现BlockExceptionHandler接口:

BlockException包含很多个子类,分别对应不同的场景:

异常 说明
FlowException 限流异常
ParamFlowException 热点参数限流的异常
DegradeException 降级异常
AuthorityException 授权规则异常
SystemBlockException 系统规则异常

在order-service的sentinel包中定义类,实现BlockExceptionHandler接口:

java 复制代码
package cn.itcast.order.sentinel;

@Component
public class SentinelExceptionHandler implements BlockExceptionHandler {
    @Override
    public void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception {
        String msg = "未知异常";
        int status = 429;

        if (e instanceof FlowException){
            msg = "请求被限流";
        } else if (e instanceof ParamFlowException) {
            msg = "请求被热点参数限流";
        } else if (e instanceof DegradeException) {
            msg = "请求被降级";
        } else if (e instanceof AuthorityException) {
            msg = "没有权限访问";
            status = 401;
        }

        response.setContentType("application/json;charset=utf-8");
        response.setStatus(status);
        response.getWriter().println("{\"msg\": " + msg + ", \"status\": " + status + "}");
    }
}

3) 规则持久化

3.a) 规则管理模式

Sentinel的控制台规则管理有三种模式:

  • 原始模式:Sentinel的默认模式,将规则保存在内存,重启服务会丢失
  • pull模式:控制台将配置的规则推送到Sentinel客户端,而客户端会将配置规则保存在本地文件或数据库中。以后会定时去本地文件或数据库中查询,更新本地规则。
  • push模式:控制台将配置规则推送到远程配置中心,例如Nacos。Sentinel客户端监听Nacos,获取配置变更的推送消息,完成本地配置更新。
相关推荐
稻草人22221 小时前
java Excel 导出 ,如何实现八倍效率优化,以及代码分层,方法封装
后端·架构
渣哥1 小时前
原来 Java 里线程安全集合有这么多种
java
间彧1 小时前
Spring Boot集成Spring Security完整指南
java
间彧2 小时前
Spring Secutiy基本原理及工作流程
java
数据智能老司机2 小时前
精通 Python 设计模式——创建型设计模式
python·设计模式·架构
Java水解3 小时前
JAVA经典面试题附答案(持续更新版)
java·后端·面试
数据智能老司机3 小时前
精通 Python 设计模式——SOLID 原则
python·设计模式·架构
洛小豆5 小时前
在Java中,Integer.parseInt和Integer.valueOf有什么区别
java·后端·面试
前端小张同学5 小时前
服务器上如何搭建jenkins 服务CI/CD😎😎
java·后端
ytadpole5 小时前
Spring Cloud Gateway:一次不规范 URL 引发的路由转发404问题排查
java·后端