深度学习中的python语法笔记总结

解释 torch中的 .clamp(min=0)

在PyTorch中,torch.clamp将张量中的元素限制在指定的范围内。

torch.clamp(min=0)会将张量中的每个元素与0进行比较,并将小于0的元素替换为0。其他大于等于0的元素则保持不变。

clamp函数原理

python 复制代码
def clamp(x, lower, upper):
    if x < lower:
        return lower
    elif x > upper:
        return upper
    else:
        return x

torch.full()

torch.full()是PyTorch库中的一个函数,用于创建一个指定形状的张量,并填充指定的值。

函数的语法如下:

python 复制代码
torch.full(size, fill_value, dtype=None, device=None, requires_grad=False)

参数说明:

size: 表示要创建的张量的形状,可以是一个整数,也可以是一个元组或列表形式的多个整数。

fill_value: 要填充到张量中的值,可以是任意标量值(如整数、浮点数等)。

dtype: 指定所创建张量的数据类型,默认为None,即使用默认的数据类型。

device: 指定所创建张量所在的设备,默认为None,表示使用当前设备。

requires_grad: 指定是否需要对张量进行自动求导,默认为False,即不进行自动求导。

python 复制代码
import torch

# 创建一个形状为(3, 2)的张量,并填充为0.5
x = torch.full((3, 2), 0.5)
print(x)
# 输出结果:
# tensor([[0.5000, 0.5000],
#         [0.5000, 0.5000],
#         [0.5000, 0.5000]])

torch.nonzero()

torch.nonzero()是PyTorch中的一个函数,用于返回张量中非零元素的索引。它的语法是:

torch.nonzero(input, *, out=None)

参数说明:

input:要检查的张量。

out(可选):输出张量,用于存储结果。

返回值是一个包含所有非零元素的索引的张量。每一行表示一个非零元素的索引,每一列表示一个维度的索引。

python 复制代码
下面是一个简单的示例:
import torch

# 创建一个张量
a = torch.tensor([[0, 1, 0],
                  [2, 0, 3]])

# 使用torch.nonzero()找到非零元素的索引
indices = torch.nonzero(a)

print(indices)
输出结果为:

tensor([[0, 1],
        [1, 0],
        [1, 2]])

unsqueeze(dim=0) 和 squeeze(0)

unsqueeze(dim=0)

用于在指定维度上给张量添加额外的维度。

在这里,假设anchors是一个PyTorch张量。unsqueeze函数用于扩展张量的维度。dim=0参数指定了要添加额外维度的位置。

例如,如果anchors是一个形状为(N,)的张量,其中N表示张量中的元素个数,那么anchors.unsqueeze(dim=0)将返回一个形状为(1, N)的张量,其中在索引0处添加了额外的维度。

squeeze(0)

是在PyTorch中的一种方法调用,用于去除张量中尺寸为1的维度。

假设anchors是一个PyTorch张量。squeeze函数可以用来去除张量中尺寸为1的维度。参数dim=0指定了要去除的维度位置。

例如,如果anchors是一个形状为(1, N)的张量,其中第一个维度的大小是1,那么anchors.squeeze(0)将返回一个形状为(N,)的张量,去除了原始张量中的第一个维度。

相关推荐
HainesFreeman17 小时前
dns server是什么?自建的dns server是什么东西?有啥用?
笔记
xian_wwq20 小时前
【学习笔记】攻击链贯穿端边云!边缘网络访问三大核心风险预警
笔记·学习·安全·边缘计算
workflower21 小时前
时序数据获取事件
开发语言·人工智能·python·深度学习·机器学习·结对编程
C++业余爱好者1 天前
Java 提供了8种基本数据类型及封装类型介绍
java·开发语言·python
java1234_小锋1 天前
Transformer 大语言模型(LLM)基石 - Transformer架构详解 - 编码器(Encoder)详解以及算法实现
深度学习·语言模型·transformer
yzx9910131 天前
深度学习的进化之路:从感知机到通用智能的曙光
人工智能·深度学习
AI Echoes1 天前
构建一个LangChain RAG应用
数据库·python·langchain·prompt·agent
深蓝海拓1 天前
PySide6从0开始学习的笔记(一) 学前班
笔记·学习
老马啸西风1 天前
成熟企业级技术平台-10-跳板机 / 堡垒机(Bastion Host)详解
人工智能·深度学习·算法·职场和发展
shipship--1 天前
htb academy笔记-module-Password Attacks(五)
笔记