多维时序 | MATLAB实现KOA-CNN-BiGRU-Attention多变量时间序列预测

多维时序 | MATLAB实现KOA-CNN-BiGRU-Attention多变量时间序列预测

目录

预测效果


基本介绍

MATLAB实现KOA-CNN-BiGRU-Attention多变量时间序列预测,KOA-CNN-BiGRU-Attention结合注意力机制多变量时间序列预测。

模型描述

MATLAB实现KOA-CNN-BiGRU-Attention多变量时间序列预测

1.程序平台:适用于MATLAB 2023版及以上版本;

2.基于开普勒优化算法(KOA)、卷积神经网络(CNN)和双向门控循环单元网络(BiGRU)融合注意力机制的超前24步多变量时间序列回归预测算法;

3.多变量特征输入,单序列变量输出,输入前一天的特征,实现后一天的预测,超前24步预测。提供MAPE、RMSE、MAE等计算结果展示。适用领域:风速预测、光伏功率预测、发电功率预测、碳价预测等多种应用。使用便捷:直接使用EXCEL表格导入数据,无需大幅修改程序。内部有详细注释,易于理解。

4.开普勒优化算法(Kepler optimization algorithm,KOA)由Mohamed Abdel-Basset等人于2023年提出的一种基于物理学的元启发式算法,它受到开普勒行星运动定律的启发,可以预测行星在任何给定时间的位置和速度。在KOA中,每个行星及其位置都是一个候选解,它在优化过程中随机更新,相对于迄今为止最优解。

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主回复MATLAB实现KOA-CNN-BiGRU-Attention多变量时间序列预测获取。
clike 复制代码
 
        gruLayer(32,'OutputMode',"last",'Name','bil4','RecurrentWeightsInitializer','He','InputWeightsInitializer','He')
        dropoutLayer(0.25,'Name','drop2')
        % 全连接层
        fullyConnectedLayer(numResponses,'Name','fc')
        regressionLayer('Name','output')    ];

    layers = layerGraph(layers);
    layers = connectLayers(layers,'fold/miniBatchSize','unfold/miniBatchSize');
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 训练选项
if gpuDeviceCount>0
    mydevice = 'gpu';
else
    mydevice = 'cpu';
end
    options = trainingOptions('adam', ...
        'MaxEpochs',MaxEpochs, ...
        'MiniBatchSize',MiniBatchSize, ...
        'GradientThreshold',1, ...
        'InitialLearnRate',learningrate, ...
        'LearnRateSchedule','piecewise', ...
        'LearnRateDropPeriod',56, ...
        'LearnRateDropFactor',0.25, ...
        'L2Regularization',1e-3,...
        'GradientDecayFactor',0.95,...
        'Verbose',false, ...
        'Shuffle',"every-epoch",...
        'ExecutionEnvironment',mydevice,...
        'Plots','training-progress');
%% 模型训练
rng(0);
net = trainNetwork(XrTrain,YrTrain,layers,options);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 测试数据预测
% 测试集预测
YPred = predict(net,XrTest,"ExecutionEnvironment",mydevice,"MiniBatchSize",numFeatures);
YPred = YPred';
% 数据反归一化
YPred = sig.*YPred + mu;
YTest = sig.*YTest + mu;
------------------------------------------------
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

参考资料

[1] http://t.csdn.cn/pCWSp

[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501

[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关推荐
学前端的小朱9 小时前
Echarts实现大屏可视化
websocket·echarts·nodejs·vue3·vite·koa·cors
Eshin_Ye12 天前
transformer学习笔记-自注意力机制(1)
笔记·学习·transformer·attention·注意力机制
YangJZ_ByteMaster14 天前
PETRv2: A Unified Framework for 3D Perception from Multi-Camera Images
人工智能·深度学习·3d·transformer·attention
机器学习之心20 天前
顶刊算法 | 鱼鹰算法OOA-BiTCN-BiGRU-Attention多输入单输出回归预测(Maltab)
人工智能·深度学习·回归·多输入单输出回归预测·attention·ooa-bitcn-bigru
程楠楠&M21 天前
koa中间件
前端·中间件·node.js·node·koa
LinKouun24 天前
论文笔记 SliceGPT: Compress Large Language Models By Deleting Rows And Columns
论文阅读·人工智能·语言模型·transformer·attention·模型压缩·注意力机制
前端小臻1 个月前
后台管理-动态路由配置以及用户权限管理(vue3+element plus+koa+Sequelize )
前端·网络·node.js·koa
胖哥真不错2 个月前
Python基于TensorFlow实现双向长短时记忆循环神经网络加注意力机制回归模型(BiLSTM-Attention回归算法)项目实战
python·tensorflow·attention·项目实战·bilstm·双向长短时记忆循环神经网络·注意力机制回归模型
胖哥真不错2 个月前
Python基于TensorFlow实现双向循环神经网络GRU加注意力机制分类模型(BiGRU-Attention分类算法)项目实战
python·tensorflow·attention·项目实战·bigru·双向循环神经网络gru·注意力机制分类模型
机器学习之心2 个月前
SCI一区级 | Matlab实现SSA-TCN-LSTM-Attention多变量时间序列预测
人工智能·matlab·lstm·attention·多变量时间序列预测·ssa-tcn-lstm