神经网络基础-神经网络补充概念-27-深层网络中的前向传播

概念

深层神经网络中的前向传播是指从输入数据开始,逐层计算每个神经元的输出值,直到得到最终的预测值。

一般步骤

1输入数据传递:

将输入数据传递给网络的输入层。输入数据通常是一个特征矩阵,每一列代表一个样本,每一行代表一个特征。

2加权求和和激活函数:

对于每个隐藏层,进行以下步骤:

3计算加权输入,即将输入数据与权重矩阵相乘并加上偏置向量。

将加权输入传递给激活函数,得到该隐藏层的激活值(输出)。常用的激活函数包括Sigmoid、ReLU、Tanh等。

4传递至下一层:

将当前隐藏层的输出作为下一隐藏层的输入,重复步骤 2,直到到达输出层。输出层的输出即为网络的预测值。

5返回预测值和缓存:

返回预测值(输出层的输出)以及在计算过程中保存的缓存(各层的加权输入和激活值),这些缓存在反向传播中会用到。

代码实现

python 复制代码
import numpy as np

# Sigmoid 激活函数
def sigmoid(x):
    return 1 / (1 + np.exp(-x))

# 初始化参数
def initialize_parameters(layer_dims):
    parameters = {}
    L = len(layer_dims)  # 网络层数

    for l in range(1, L):
        parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1]) * 0.01
        parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))

    return parameters

# 前向传播
def forward_propagation(X, parameters):
    caches = []
    A = X
    L = len(parameters) // 2  # 网络层数

    for l in range(1, L):
        Z = np.dot(parameters['W' + str(l)], A) + parameters['b' + str(l)]
        A = sigmoid(Z)
        caches.append((Z, A))

    Z = np.dot(parameters['W' + str(L)], A) + parameters['b' + str(L)]
    AL = sigmoid(Z)
    caches.append((Z, AL))

    return AL, caches

# 示例数据
X = np.random.randn(3, 10)  # 3个特征,10个样本
layer_dims = [3, 4, 5, 1]  # 输入层维度、各隐藏层维度、输出层维度
parameters = initialize_parameters(layer_dims)

# 前向传播
AL, caches = forward_propagation(X, parameters)

# 打印预测值
print("预测值:", AL)
相关推荐
阿里云大数据AI技术8 分钟前
云栖实录|智能哨兵:AI驱动的云平台风险巡检
大数据·运维·人工智能
机器之心14 分钟前
单张4090跑到30fps,范浩强团队让VLA实时跑起来了
人工智能·openai
国科安芯27 分钟前
光电传感器领域国产MCU芯片抗辐照技术考量
网络·人工智能·单片机·嵌入式硬件·安全
木昆子44 分钟前
大模型流式输出:七大底层传输技术对比探究
人工智能·http·ai编程
拓端研究室1 小时前
专题:2025机器人产业的变革与展望白皮书:人形机器人与工业机器人洞察|附130+份报告PDF、数据、绘图模板汇总下载
人工智能·机器人·pdf
Luhui_Dev1 小时前
AI 自主决定记忆:探索 A-MEM、Mem-α 和 Mem0
人工智能
长颈鹿仙女1 小时前
发送 Prompt 指令:请用一句话总结文本内容
python·深度学习·大模型
Small___ming1 小时前
【人工智能数学基础】什么是高斯分布/正态分布?
人工智能·概率论
兔兔爱学习兔兔爱学习1 小时前
LangChain4j学习6:agent
人工智能·学习·语言模型
LaughingZhu1 小时前
Product Hunt 每日热榜 | 2025-10-30
大数据·人工智能·经验分享·搜索引擎·百度·产品运营