神经网络基础-神经网络补充概念-27-深层网络中的前向传播

概念

深层神经网络中的前向传播是指从输入数据开始,逐层计算每个神经元的输出值,直到得到最终的预测值。

一般步骤

1输入数据传递:

将输入数据传递给网络的输入层。输入数据通常是一个特征矩阵,每一列代表一个样本,每一行代表一个特征。

2加权求和和激活函数:

对于每个隐藏层,进行以下步骤:

3计算加权输入,即将输入数据与权重矩阵相乘并加上偏置向量。

将加权输入传递给激活函数,得到该隐藏层的激活值(输出)。常用的激活函数包括Sigmoid、ReLU、Tanh等。

4传递至下一层:

将当前隐藏层的输出作为下一隐藏层的输入,重复步骤 2,直到到达输出层。输出层的输出即为网络的预测值。

5返回预测值和缓存:

返回预测值(输出层的输出)以及在计算过程中保存的缓存(各层的加权输入和激活值),这些缓存在反向传播中会用到。

代码实现

python 复制代码
import numpy as np

# Sigmoid 激活函数
def sigmoid(x):
    return 1 / (1 + np.exp(-x))

# 初始化参数
def initialize_parameters(layer_dims):
    parameters = {}
    L = len(layer_dims)  # 网络层数

    for l in range(1, L):
        parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1]) * 0.01
        parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))

    return parameters

# 前向传播
def forward_propagation(X, parameters):
    caches = []
    A = X
    L = len(parameters) // 2  # 网络层数

    for l in range(1, L):
        Z = np.dot(parameters['W' + str(l)], A) + parameters['b' + str(l)]
        A = sigmoid(Z)
        caches.append((Z, A))

    Z = np.dot(parameters['W' + str(L)], A) + parameters['b' + str(L)]
    AL = sigmoid(Z)
    caches.append((Z, AL))

    return AL, caches

# 示例数据
X = np.random.randn(3, 10)  # 3个特征,10个样本
layer_dims = [3, 4, 5, 1]  # 输入层维度、各隐藏层维度、输出层维度
parameters = initialize_parameters(layer_dims)

# 前向传播
AL, caches = forward_propagation(X, parameters)

# 打印预测值
print("预测值:", AL)
相关推荐
乐迪信息2 小时前
乐迪信息:目标检测算法+AI摄像机:煤矿全场景识别方案
人工智能·物联网·算法·目标检测·目标跟踪·语音识别
学术小白人4 小时前
【EI会议征稿通知】2026年智能感知与自主控制国际学术会议(IPAC 2026)
人工智能·物联网·数据分析·区块链·能源
HyperAI超神经4 小时前
在线教程丨 David Baker 团队开源 RFdiffusion3,实现全原子蛋白质设计的生成式突破
人工智能·深度学习·学习·机器学习·ai·cpu·gpu
ASKED_20197 小时前
End-To-End之于推荐: Meta GRs & HSTU 生成式推荐革命之作
人工智能
liulanba7 小时前
AI Agent技术完整指南 第一部分:基础理论
数据库·人工智能·oracle
自动化代码美学7 小时前
【AI白皮书】AI应用运行时
人工智能
小CC吃豆子7 小时前
openGauss :核心定位 + 核心优势 + 适用场景
人工智能
一瞬祈望7 小时前
⭐ 深度学习入门体系(第 7 篇): 什么是损失函数?
人工智能·深度学习·cnn·损失函数
徐小夕@趣谈前端7 小时前
15k star的开源项目 Next AI Draw.io:AI 加持下的图表绘制工具
人工智能·开源·draw.io
优爱蛋白8 小时前
MMP-9(20-469) His Tag 蛋白:高活性可溶性催化结构域的研究工具
人工智能·健康医疗