神经网络基础-神经网络补充概念-27-深层网络中的前向传播

概念

深层神经网络中的前向传播是指从输入数据开始,逐层计算每个神经元的输出值,直到得到最终的预测值。

一般步骤

1输入数据传递:

将输入数据传递给网络的输入层。输入数据通常是一个特征矩阵,每一列代表一个样本,每一行代表一个特征。

2加权求和和激活函数:

对于每个隐藏层,进行以下步骤:

3计算加权输入,即将输入数据与权重矩阵相乘并加上偏置向量。

将加权输入传递给激活函数,得到该隐藏层的激活值(输出)。常用的激活函数包括Sigmoid、ReLU、Tanh等。

4传递至下一层:

将当前隐藏层的输出作为下一隐藏层的输入,重复步骤 2,直到到达输出层。输出层的输出即为网络的预测值。

5返回预测值和缓存:

返回预测值(输出层的输出)以及在计算过程中保存的缓存(各层的加权输入和激活值),这些缓存在反向传播中会用到。

代码实现

python 复制代码
import numpy as np

# Sigmoid 激活函数
def sigmoid(x):
    return 1 / (1 + np.exp(-x))

# 初始化参数
def initialize_parameters(layer_dims):
    parameters = {}
    L = len(layer_dims)  # 网络层数

    for l in range(1, L):
        parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1]) * 0.01
        parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))

    return parameters

# 前向传播
def forward_propagation(X, parameters):
    caches = []
    A = X
    L = len(parameters) // 2  # 网络层数

    for l in range(1, L):
        Z = np.dot(parameters['W' + str(l)], A) + parameters['b' + str(l)]
        A = sigmoid(Z)
        caches.append((Z, A))

    Z = np.dot(parameters['W' + str(L)], A) + parameters['b' + str(L)]
    AL = sigmoid(Z)
    caches.append((Z, AL))

    return AL, caches

# 示例数据
X = np.random.randn(3, 10)  # 3个特征,10个样本
layer_dims = [3, 4, 5, 1]  # 输入层维度、各隐藏层维度、输出层维度
parameters = initialize_parameters(layer_dims)

# 前向传播
AL, caches = forward_propagation(X, parameters)

# 打印预测值
print("预测值:", AL)
相关推荐
深圳市快瞳科技有限公司几秒前
当OCR遇上“幻觉”:如何让AI更靠谱地“看懂”文字?
人工智能·ai·ocr
每天都要写算法(努力版)1 分钟前
【神经网络与深度学习】训练集与验证集的功能解析与差异探究
人工智能·深度学习·神经网络
vocal20 分钟前
谷歌第七版Prompt Engineering—第一部分
人工智能
MonkeyKing_sunyuhua21 分钟前
5.6 Microsoft Semantic Kernel:专注于将LLM集成到现有应用中的框架
人工智能·microsoft·agent
arbboter29 分钟前
【AI插件开发】Notepad++ AI插件开发1.0发布和使用说明
人工智能·大模型·notepad++·ai助手·ai插件·aicoder·notepad++插件开发
BB_CC_DD30 分钟前
四. 以Annoy算法建树的方式聚类清洗图像数据集,一次建树,无限次聚类搜索,提升聚类搜索效率。(附完整代码)
深度学习·算法·聚类
IT_Octopus41 分钟前
AI工程pytorch小白TorchServe部署模型服务
人工智能·pytorch·python
果冻人工智能1 小时前
AI军备竞赛:我们是不是正在造一个无法控制的神?
人工智能
暴龙胡乱写博客1 小时前
OpenCV---图像预处理(四)
人工智能·opencv·计算机视觉