神经网络基础-神经网络补充概念-42-梯度检验

概念

梯度检验(Gradient Checking)是一种验证数值计算梯度与解析计算梯度之间是否一致的技术,通常用于确保实现的反向传播算法正确性。在深度学习中,通过梯度检验可以帮助验证你的神经网络模型是否正确地计算了梯度,从而减少可能的错误。

梯度检验的基本思想是使用数值近似来估计梯度,然后将数值梯度与解析梯度进行比较,如果它们之间非常接近,那么可以认为反向传播算法的实现是正确的。这是一个在调试和验证模型实现时常用的技术。

代码实现

假设你有一个简单的函数 f(x) = x^2,并且你想计算在某个点 x 处的梯度。

python 复制代码
def forward_propagation(x):
    return x ** 2

def backward_propagation(x):
    return 2 * x

def gradient_check(x, epsilon=1e-7):
    analytical_gradient = backward_propagation(x)
    
    # 计算数值梯度
    x_plus_epsilon = x + epsilon
    x_minus_epsilon = x - epsilon
    numerical_gradient = (forward_propagation(x_plus_epsilon) - forward_propagation(x_minus_epsilon)) / (2 * epsilon)
    
    # 比较数值梯度和解析梯度
    diff = abs(analytical_gradient - numerical_gradient)
    if diff < epsilon:
        print("Gradient check passed!")
    else:
        print("Gradient check failed!")
    
x = 2.0
gradient_check(x)
相关推荐
mit6.8241 小时前
[Meetily后端框架] Whisper转录服务器 | 后端服务管理脚本
c++·人工智能·后端·python
Baihai IDP1 小时前
AI 系统架构的演进:LLM → RAG → AI Workflow → AI Agent
人工智能·ai·系统架构·llm·agent·rag·白海科技
沫儿笙1 小时前
弧焊机器人气体全方位节能指南
网络·人工智能·机器人
LONGZETECH1 小时前
【龙泽科技】新能源汽车维护与动力蓄电池检测仿真教学软件【吉利几何G6】
人工智能·科技·汽车·汽车仿真教学软件·汽车教学软件
看到我,请让我去学习2 小时前
OpenCV 与深度学习:从图像分类到目标检测技术
深度学习·opencv·分类
jndingxin2 小时前
OpenCV 图像哈希类cv::img_hash::AverageHash
人工智能·opencv·哈希算法
加油加油的大力2 小时前
入门基于深度学习(以yolov8和unet为例)的计算机视觉领域的学习路线
深度学习·yolo·计算机视觉
Jamence2 小时前
多模态大语言模型arxiv论文略读(153)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记
晨曦5432102 小时前
量子计算突破:8比特扩散模型实现指数级加速
人工智能
Albert_Lsk2 小时前
【2025/07/11】GitHub 今日热门项目
人工智能·开源·github·开源协议