神经网络基础-神经网络补充概念-42-梯度检验

概念

梯度检验(Gradient Checking)是一种验证数值计算梯度与解析计算梯度之间是否一致的技术,通常用于确保实现的反向传播算法正确性。在深度学习中,通过梯度检验可以帮助验证你的神经网络模型是否正确地计算了梯度,从而减少可能的错误。

梯度检验的基本思想是使用数值近似来估计梯度,然后将数值梯度与解析梯度进行比较,如果它们之间非常接近,那么可以认为反向传播算法的实现是正确的。这是一个在调试和验证模型实现时常用的技术。

代码实现

假设你有一个简单的函数 f(x) = x^2,并且你想计算在某个点 x 处的梯度。

python 复制代码
def forward_propagation(x):
    return x ** 2

def backward_propagation(x):
    return 2 * x

def gradient_check(x, epsilon=1e-7):
    analytical_gradient = backward_propagation(x)
    
    # 计算数值梯度
    x_plus_epsilon = x + epsilon
    x_minus_epsilon = x - epsilon
    numerical_gradient = (forward_propagation(x_plus_epsilon) - forward_propagation(x_minus_epsilon)) / (2 * epsilon)
    
    # 比较数值梯度和解析梯度
    diff = abs(analytical_gradient - numerical_gradient)
    if diff < epsilon:
        print("Gradient check passed!")
    else:
        print("Gradient check failed!")
    
x = 2.0
gradient_check(x)
相关推荐
weisian151几秒前
入门篇--知名企业-12-Stability AI:不止于“艺术”,这是一场开源AI的全面起义
人工智能·开源·stablility ai
五月君_25 分钟前
Nuxt UI v4.3 发布:原生 AI 富文本编辑器来了,Vue 生态又添一员猛将!
前端·javascript·vue.js·人工智能·ui
wjykp28 分钟前
109~111集成学习
人工智能·机器学习·集成学习
小程故事多_8034 分钟前
Spring AI 赋能 Java,Spring Boot 快速落地 LLM 的企业级解决方案
java·人工智能·spring·架构·aigc
xcLeigh37 分钟前
AI的提示词专栏:写作助手 Prompt,从提纲到完整文章
人工智能·ai·prompt·提示词
QYR_1143 分钟前
热塑性复合树脂市场报告:行业现状、增长动力与未来机遇
大数据·人工智能·物联网
nju_spy1 小时前
强化学习 -- 无导数随机优化算法玩俄罗斯方块Tetris(交叉熵方法CE + ADP近似动态规划CBMPI)
人工智能·强化学习·策略迭代·近似动态规划·交叉熵方法·价值函数近似·无导数优化
2501_907136821 小时前
AI写的软件:legado图源(开源阅读)异次元图源调试器
人工智能·软件需求
LiFileHub1 小时前
深度学习全景解析:从技术原理到十大领域落地实践
人工智能·深度学习
lbb 小魔仙1 小时前
AI Agent 开发终极手册:Manus、MetaGPT 与 CrewAI 深度对比
人工智能·ai