【C++】STL---list

STL---list

一、list 的介绍

  1. list 是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。
  2. list 的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。
  3. listforward_list 非常相似:最主要的不同在于 forward_list 是单链表,只能朝前迭代,已让其更简单高效。
  4. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好。
  5. 与其他序列式容器相比,listforward_list 最大的缺陷是不支持任意位置的随机访问,比如:要访问 list 的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;list 还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大 list 来说这可能是一个重要的因素)。

二、list 的模拟实现

list 学习时也要学会查看文档:list 文档介绍,在实际中我们熟悉常见的接口就可以,下面我们直接开始模拟实现,在模拟实现中我们实现的是常见的接口,并且会在实现中讲解它们的使用以及注意事项。

首先跟以往不一样的是,list 是一个个节点连接起来的,所以它不是连续的物理空间,这也就意味着,它不用扩容,每次插入的时候只需要申请一个节点,然后连接起来即可;

其次,list 底层的迭代器实现也跟 stringvector 不一样,它们两个的迭代器可以说是原生指针,但是 list 的迭代器是要让节点指向下一个节点,所以底层实现也不一样;例如我们想让迭代器 it ,往后迭代,就是 ++it ,但是底层的实现却不是真的让节点++,因为它们的空间不是连续的,所以我们要把 list 迭代器封装成一个类。

首先我们先创建一个自己的命名空间,把 list 节点的类,list 迭代器的类,list 类都放进去;

1. list 节点类

list 节点类如下,因为是双向链表,所以应该有一个数据,两个指针;

		namespace Young
		{
			// list 节点类
			template <class T>
			struct list_node
			{
				T _data;
				list_node<T>* _next;
				list_node<T>* _prev;
		
				list_node(const T& x = T())
					:_data(x)
					,_next(nullptr)
					,_prev(nullptr)
				{}
		
			};
		}

2. list 迭代器类

首先我们先定义一个类模板,其参数有三个,分别是类型类型的引用(const 和 非const)类型的指针(const 和 非const)

为什么要定义三个模板参数呢,因为考虑到 const 迭代器const 迭代器 和普通迭代器不是同一个类,不能直接在 iterator 前直接加 const ,如 const iterator ,这不是 const 迭代器 ,因为这里的 const 修饰的是迭代器本身,就是迭代器本身不能修改,但是我们期望的是迭代器本身可以被修改,如 it++、++it,只是期望迭代器指向的内容不能被修改,如 *it = 10、it->10

这就类比 const T*T* constconst T*const 是修饰指向的内容不能被修改,而 T* constconst 修饰的是指针本身不能被修改;而我们需要实现的 const 迭代器 是要满足第一种的,所以 list普通迭代器const 迭代器 是两个完全不一样的类,应该写成两个类,但是我们可以通过增加两个模板参数 类型的引用(const 和 非const)类型的指针(const 和 非const) 来复用普通迭代器,具体实现如下:

		// list 迭代器类
		template <class T,class Ref,class Ptr>
		struct __list_iterator
		{
			typedef list_node<T> Node;
			typedef __list_iterator<T, Ref, Ptr> self;
			
			Node* _node;
	
			// 迭代器构造函数
			__list_iterator(Node* node)
				:_node(node)
			{}
		}

首先我们先将节点类起别名为 Node ,再将自己的类起别名为 self ;迭代器本身也是一个指针,只是它内部实现不一样,所以我们需要一个 _node 节点的指针,构造函数实例化一个节点的指针,比如说 list<int>::iterator it = lt.begin();,这里的 it 就会调构造函数,实例化一个 lt.begin() 节点的指针,其实 lt.begin() 就是指向头节点的指针。

接着我们重载一些迭代器常用的运算符:

(1)前置++

就是让迭代器往后迭代,具体的实现就是让节点的指针指向下一个节点:

			// 前置 ++
			self& operator++()
			{
				_node = _node->_next;
				return *this;
			}

(2)后置++

跟前置++的区别就是,后置++需要拷贝,返回++以前的迭代器,所以一般都不用后置++;

			// 后置 ++
			self operator++(int)
			{
				self tmp(*this);
				_node = _node->_next;
	
				return tmp;
			}

(3)前置- -、后置- -

前置- -、后置- - 与 ++ 的区别就是, - -返回上一个节点的迭代器;

			// 前置 --
			self& operator--()
			{
				_node = _node->_prev;
	
				return *this;
			}
			
	
			// 后置--
			self operator--(int)
			{
				self tmp(*this);
				_node = _node->_prev;
	
				return tmp;
			}

(4)!= 和 == 运算符重载

!= 运算符重载就是比较它们的节点是否相等;== 运算符就相反;

			// != 运算符重载   iterator it != lt.begin();
			bool operator!=(const self& s)
			{
				return s._node != _node;
			}
	

			// == 运算符重载   iterator it == lt.begin();
			bool operator==(const self& s) 
			{
				return s._node == _node;
			}

(5)* 解引用重载 和 -> 重载

解引用重载-> 重载 就是改变迭代器指向内容的两个运算符,所以我们定义的三个模板参数,就在这里起作用了;比如我们实例化的模板参数是 const 迭代器__list_iterator<T, const T&, const T*>,这里的 const T& 就是 Refconst T* 就是 Ptr ,这里就可以直接用 Ref (解引用重载)和 Ptr(箭头重载) 作返回值;

如果是 非const 迭代器__list_iterator<T, T&, T*>T& 就是 RefT* 就是 Ptr;所以就可以根据它们的类型返回对应的迭代器类型,就不需要我们自己写两个迭代器的类了。

			// * 解引用重载
			Ref operator*()
			{
				return _node->_data;
			}
	
			// -> 重载
			Ptr operator->()
			{
				return &_node->_data;
			}

解引用-> 重载的使用:

假设 list 里面存的类型是一个自定义类型,这个自定义类型中有两个成员变量,那么我们在使用 解引用-> 重载的时候,应该访问哪一个呢?这时候就需要我们指定访问了,如下代码:

		struct AA
		{
			AA(int a1 = 0, int a2 = 0)
				:_a1(a1)
				, _a2(a2)
			{}
		
			int _a1;
			int _a2;
		};
		
		void test4()
		{
			Young::list<AA> lt;
			lt.push_back(AA(1, 1));
			lt.push_back(AA(2, 2));
			lt.push_back(AA(3, 3));
		
			Young::list<AA>::iterator it = lt.begin();
			while (it != lt.end())
			{
				// 使用解引用
				//cout << (*it)._a1<<" "<<(*it)._a2 << endl;
				
				//使用 ->
				cout << it->_a1 << " " << it->_a2 << endl;

				++it;
			}
			cout << endl;
		}

上面的 cout << it->_a1 << " " << it->_a2 << endl; 调用了->重载,实际上是 cout << it.operator->()->_a1 << " " << it.operator->()->_a2 << endl;,本来应该是有两个 -> 的,即 it->->_a1 但是这样写可读性不好,所以编译器特殊处理,省略了一个 ->

3. list 类

list 类首先将 const 迭代器和非 const 迭代器类型起别名为 const_iteratoriterator ;成员变量有 _head 哨兵位节点和 _size 记录链表的长度,如下:

		// list 类
		template <class T>
		class list
		{
		public:
			typedef list_node<T> Node;
			typedef __list_iterator<T, T&, T*> iterator;
			typedef __list_iterator<T, const T&, const T*> const_iterator;
			
		private:
			Node* _head;
			size_t _size;
		};

(1)迭代器

注意,begin() 是哨兵位的下一个节点,end() 是哨兵位节点。

begin()end() 返回的类型也是一个迭代器,这里 iterator(_head->_next) 是调用迭代器类的构造函数,构造一个节点的指针返回;也可以写成 _head->_next,因为支持隐式类型的转换;

			// 非 const 迭代器
			iterator begin()
			{
				return iterator(_head->_next);
			}
	
			iterator end()
			{
				return iterator(_head);
			}
			
			
			// const 迭代器
			const const_iterator begin() const
			{
				return const_iterator(_head->_next);
			}
	
			const const_iterator end() const
			{
				return const_iterator(_head);
			}

(2)修改相关的接口

swap()

交换链表数据,需要借助标准库的 swap 函数实现:

			// 交换链表数据
			void swap(list<T>& lt)
			{
				std::swap(_head, lt._head);
				std::swap(_size, lt._size);
			}

insert()

pos 迭代器插入节点;新开一个节点,然后插入指定迭代器的位置,连接好 prevcur 的位置即可;因为 list 的底层结构为带头结点的双向循环链表,因此在 list 中进行插入时是不会导致 list 的迭代器失效的;

			// 插入节点
			iterator insert(iterator pos, const T& x)
			{
				Node* newnode = new Node(x);
				Node* cur = pos._node;
	
				Node* prev = cur->_prev;
	
				prev->_next = newnode;
				newnode->_prev = prev;
				newnode->_next = cur;
				cur->_prev = newnode;
	
				++_size;
	
				return newnode;
			}

erase()

删除 pos 迭代器位置的节点;在删除时迭代器会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响,所以 erase() 函数执行后,it 所指向的节点已被删除,因此 it 无效,在下一次使用 it 时,必须先给其赋值;

			// 删除节点
			iterator erase(iterator pos)
			{
				Node* prev = pos._node->_prev;
				Node* next = pos._node->_next;
	
				prev->_next = next;
				next->_prev = prev;
	
				delete pos._node;
				pos._node->_next = pos._node->_prev = nullptr;
	
				--_size;
	
				return next;
			}

push_back、push_front、pop_back、pop_front

只需要复用 insert()erase() 即可,实现如下:

			// 尾插
			void push_back(const T& x)
			{
				insert(end(), x);
			}
	
			// 头插
			void push_front(const T& x)
			{
				insert(begin(), x);
			}
	
			// 尾删
			void pop_back()
			{
				erase(--end());
			}
	
			// 头删
			void pop_front()
			{
				erase(begin());
			}

clear()

清空链表数据,删除除了哨兵位的节点即可;

			// 清空链表数据
			void clear()
			{
				iterator it = begin();
				while (it != end())
				{
					it = erase(it);
				}
			}		

以上修改接口配合迭代器的使用如下图:

(3)空链表初始化

			// 空链表初始化
			void empty_init()
			{
				_head = new Node;
				_head->_next = _head;
				_head->_prev = _head;
	
				_size = 0;
			}

(4)构造函数

构造函数只需要创建一个哨兵位即可;

			// 构造函数
			list()
			{
				empty_init();
			}

(5)拷贝构造函数

拷贝构造函数直接初始化,然后插入数据即可;

			// 拷贝构造函数 -- lt2(lt1)
			list(const list<T>& lt)
			{
				empty_init();
				for (auto e : lt)
				{
					push_back(e);
				}
			}

(6)赋值运算符重载

现代写法,传参的时候调用拷贝构造,然后交换数据即可;

			// 赋值运算符重载 -- lt2 = lt1
			list<T>& operator=(list<T> lt)
			{
				swap(lt);
	
				return *this;
			}

(7)析构函数

清空链表数据之后再释放哨兵位的节点即可;

			// 析构函数
			~list()
			{
				clear();
	
				delete _head;
				_head = nullptr;
			}

4. 打印容器的接口

(1)打印链表整型的接口

vectorlist 这些容器都没有重载流插入运算符,所以我们可以自己实现一个打印的接口函数;我们先来实现一下打印链表整型的接口:

		// 打印链表 -- 只能针对 int 类型
		void print_list(const list<int>& lt)
		{
			list<int>::const_iterator it = lt.begin();
			while (it != lt.end())
			{
				//*it = 10; error
				cout << *it << " ";
				++it;
			}
			cout << endl;
		}

此接口可以打印链表的数据,但是只能针对 int 类型,我们可以对它进行改造一下,使用模板。

(2)打印 list 的接口

我们学了模板,就可以利用模板实现泛型编程,将类型改为模板的泛型,即可打印 list 中的不同类型,如下:

		// 打印链表 -- 只能打印 list 容器
		template<typename T>
		void print_list(const list<T>& lt)
		{
			typename list<T>::const_iterator it = lt.begin();
			while (it != lt.end())
			{
				//*it = 10; error
				cout << *it << " ";
				++it;
			}
			cout << endl;
		}

这里的模板参数使用了 typedef 关键字,这里必须使用 typedef 关键字,而且在指定类域前还要加上 typedef 关键字,如 typename list<T>::const_iterator it = lt.begin();;因为在模板还没有进行实例化的时候, const_iterator 就到 list<T> 的类域中寻找类型,此时类中还没有实例化参数 T ,所以编译器分不清它是类型还是静态变量,不能去 list<T> 里面找,所以在前面加 typedef 关键字就说明它是个类型,编译器在等 list<T> 实例化后,再去类里面去取根据类型去取类型。

但是上面的接口还是不够完美,要是我想打印 vector 呢?那还是不能打印出来,所以我们可以实现一个专门打印容器的接口;

(3)打印容器的接口

我们使用模板参数代表容器,让编译器到指定容器去取它的迭代器即可;

		// 打印容器 -- 能打印各种容器
		template<typename container>
		void print_container(const container& con)
		{
			typename container::const_iterator cit = con.begin();
			while (cit != con.end())
			{
				cout << *cit << " ";
				++cit;
			}
			cout << endl;
		}

使用如下图:

相关推荐
ChoSeitaku4 分钟前
链表交集相关算法题|AB链表公共元素生成链表C|AB链表交集存放于A|连续子序列|相交链表求交点位置(C)
数据结构·考研·链表
秋の花5 分钟前
【JAVA基础】Java集合基础
java·开发语言·windows
偷心编程5 分钟前
双向链表专题
数据结构
香菜大丸5 分钟前
链表的归并排序
数据结构·算法·链表
jrrz08286 分钟前
LeetCode 热题100(七)【链表】(1)
数据结构·c++·算法·leetcode·链表
小松学前端8 分钟前
第六章 7.0 LinkList
java·开发语言·网络
可峰科技17 分钟前
斗破QT编程入门系列之二:认识Qt:编写一个HelloWorld程序(四星斗师)
开发语言·qt
咖啡里的茶i21 分钟前
Vehicle友元Date多态Sedan和Truck
c++
全栈开发圈21 分钟前
新书速览|Java网络爬虫精解与实践
java·开发语言·爬虫
面试鸭25 分钟前
离谱!买个人信息买到网安公司头上???
java·开发语言·职场和发展