AlexNet阅读笔记

ImageNet classification with deep convolutional neural networks

原文链接:https://dl.acm.org/doi/abs/10.1145/3065386

中文翻译:https://blog.csdn.net/qq_38473254/article/details/132307508

使用深度卷积神经网络进行 ImageNet 分类

摘要

  1. 大型卷积神经网络AlexNet,实现了低错误率;
  2. 该网络由5个卷积层和3个全连接层组成;
  3. 使用了GPU加快了训练速度;
  4. 开发了"dropout"正则化手段减少过拟合;

1. 简介

  1. 为了更强大的模型,大型的数据集是需要的,如ImageNet;
  2. GPU能够与2D卷积实现结合,可以促进CNN训练;
  3. 如果有更快的GPU和更大的数据集,结果就可以得到改善。

2. 数据集

  1. 使用ImageNet的子集,每个类别包含大约1000个图像。总共大约有120万张训练图像、5五万张验证图像和15万张测试图像;
  2. ImageNet是由可变分辨率图像组成,这里将图像下采样到固定分辨率256 × 256。

3.架构

3.1 ReLU非线性

  1. 使用 ReLU 的深度卷积神经网络的训练速度比使用 tanh 单元的深度卷积神经网络快几倍;
  2. 激活函数:

3.2 多GPU上的训练

  1. GPU适合并行训练,将网络分布在两个GPU上。

3.3 局部响应标准化

3.4 重叠池化

  1. 间隔s个像素<池化单元位置为中心的大小为z × z 的邻域。

3.5 整体架构

  1. 输入图像:224×224×3
  2. 第一个卷积层 :96 个大小为 11×11×3 的核,步幅4
  3. 第二个卷积层:256 个大小为 5 × 5 × 48核
  4. 第三个卷积层:384 个大小为 3 × 3 × 256 的内核
  5. 第四个卷积层: 384 个大小为 3 × 3 × 192 的内核
  6. 第五个卷积层: 256 个大小为 3 × 3 × 192 的内核
  7. 第一个全连接层:4096 个神经元
  8. 第二个全连接层:4096 个神经元
  9. 第三个全连接层:1000个神经元
  10. 最后输出到softmax

4. 减少过拟合

4.1 数据增强

  1. 图像平移和水平反射,将训练集的大小增加了 2048 倍,减少了过拟合;
  2. 改变训练图像中 RGB 通道的强度,将错误率降低了1%。

4.2 Dropout

  1. 以 0.5 的概率将每个隐藏神经元的输出设置为零,减少了过拟合。

5. 学习细节

  1. 使用随机梯度下降来训练模型,减少了模型的训练误差
  2. 使用标准差为0.01的零均值高斯分布初始化每层权重;
    用常量1初始化第二、第四、第五卷积层和全连接隐藏层的神经元偏差;
    用常量0初始化剩余层的神经元偏差。
  3. 对所有层使用相同的学习率,当验证错误率不随当前学习率提高,将学习率除以10。学习率初始化为0.01并且终止前减少了三倍。

6. 结果

1.错误率相较于之前的Top-1和Top-5得到明显降低

6.1 定性评价

  1. GPU 1 上的内核很大程度上与颜色无关,而 GPU 2 上的内核主要与颜色相关
  2. 如果两个图像产生具有较小欧几里德分离的特征激活向量,我们可以说神经网络的更高层认为它们是相似的

7. 讨论

  1. 删除单个卷积层,网络性能就会下降,所以深度对于实现图像分类很重要。
相关推荐
报错小能手10 分钟前
C++笔记(面向对象)详解单例模式
c++·笔记·单例模式
MADAO_luv13 分钟前
YOLOV11分类动物图像
深度学习·yolo·机器学习
Dev7z18 分钟前
基于Swin Transformer的皮肤病变分类与诊断系统
人工智能·深度学习·transformer
晓py36 分钟前
SQL调优专题笔记:打造你的数据库性能优化思维体系
数据库·笔记·sql
三无少女指南39 分钟前
在 Ubuntu 上使用 Docker 部署思源笔记:一份详尽的实践教程以及常见错误汇总
笔记·ubuntu·docker
junziruruo1 小时前
计算机视觉、医学图像处理、深度学习、多模态融合方向分析
图像处理·深度学习·计算机视觉
AI人工智能+1 小时前
服务器端护照识别技术:通过图像预处理、OCR字符识别和智能分析实现高效身份核验
人工智能·深度学习·ocr·护照识别
路弥行至2 小时前
C语言入门教程 | 第七讲:函数和程序结构完全指南
c语言·经验分享·笔记·其他·算法·课程设计·入门教程
凌然先生2 小时前
12.如何利用ArcGIS进行基本的空间数据格式转换
经验分享·笔记·arcgis·电脑
猿代码_xiao3 小时前
大模型微调完整步骤( LLama-Factory)
人工智能·深度学习·自然语言处理·chatgpt·llama·集成学习