torch.cat((A,B),dim=1)解析

官方说明torch.cat

引用自:Pytorch中的torch.cat()函数

python 复制代码
torch.cat(tensors, dim=0, *, out=None) → Tensor
# 连接给定维数的给定序列的序列张量。所有张量要么具有相同的形状(除了连接维度),要么为空。

示例

输入:

python 复制代码
import torch
a = torch.Tensor(2,3)   #  (2行,3列)
b = torch.Tensor(2,3)
print (a)
print (b)

输出:

python 复制代码
tensor([[8.9082e-39, 1.0194e-38, 9.1837e-39],
        [8.4490e-39, 9.6429e-39, 8.4490e-39]])
tensor([[-2.0541e-05,  5.0727e-43, -2.0541e-05],
        [ 5.0727e-43, -2.1039e-05,  5.0727e-43]])

输入:

python 复制代码
print(torch.cat([a,b], dim= 0))  
# 1. torch.cat((x,y),dim=0) :张量 X,Y按照列堆起来

输出:

python 复制代码
tensor([[ 8.9082e-39,  1.0194e-38,  9.1837e-39],
        [ 8.4490e-39,  9.6429e-39,  8.4490e-39],
        [-2.0541e-05,  5.0727e-43, -2.0541e-05],
        [ 5.0727e-43, -2.1039e-05,  5.0727e-43]])

输入:

python 复制代码
print(torch.cat([a,b], dim=-1))
# 2. torch.cat((x,y),dim=1) :张量 X,Y按照行并排起来

输出:

python 复制代码
tensor([[ 8.9082e-39,  1.0194e-38,  9.1837e-39, -2.0541e-05,  5.0727e-43,
         -2.0541e-05],
        [ 8.4490e-39,  9.6429e-39,  8.4490e-39,  5.0727e-43, -2.1039e-05,
          5.0727e-43]])

总结:

torch.cat((x,y),dim=0) :张量 X,Y按照列堆起来
torch.cat((x,y),dim=1) :张量 X,Y按照行并排起来

相关推荐
Heorine几秒前
数学建模 绘图 图表 可视化(6)
python·数学建模·数据可视化
栈与堆4 分钟前
LeetCode-1-两数之和
java·数据结构·后端·python·算法·leetcode·rust
向量引擎小橙17 分钟前
推理革命与能耗:AI大模型应用落地的“冰山成本”与破局之路
大数据·人工智能·深度学习·集成学习
rayufo33 分钟前
深度学习对三维图形点云数据分类
人工智能·深度学习·分类
智航GIS1 小时前
10.7 pyspider 库入门
开发语言·前端·python
副露のmagic1 小时前
更弱智的算法学习 day25
python·学习·算法
hudawei9961 小时前
Flask 与 FastAPI 对比分析
python·flask·fastapi
寻星探路2 小时前
【Python 全栈测开之路】Python 基础语法精讲(一):常量、变量与运算符
java·开发语言·c++·python·http·ai·c#
_codemonster2 小时前
计算机视觉入门到实战系列(九) SIFT算法(尺度空间、极值点判断)
深度学习·算法·计算机视觉
智航GIS2 小时前
10.5 PyQuery:jQuery 风格的 Python HTML 解析库
python·html·jquery