torch.cat((A,B),dim=1)解析

官方说明torch.cat

引用自:Pytorch中的torch.cat()函数

python 复制代码
torch.cat(tensors, dim=0, *, out=None) → Tensor
# 连接给定维数的给定序列的序列张量。所有张量要么具有相同的形状(除了连接维度),要么为空。

示例

输入:

python 复制代码
import torch
a = torch.Tensor(2,3)   #  (2行,3列)
b = torch.Tensor(2,3)
print (a)
print (b)

输出:

python 复制代码
tensor([[8.9082e-39, 1.0194e-38, 9.1837e-39],
        [8.4490e-39, 9.6429e-39, 8.4490e-39]])
tensor([[-2.0541e-05,  5.0727e-43, -2.0541e-05],
        [ 5.0727e-43, -2.1039e-05,  5.0727e-43]])

输入:

python 复制代码
print(torch.cat([a,b], dim= 0))  
# 1. torch.cat((x,y),dim=0) :张量 X,Y按照列堆起来

输出:

python 复制代码
tensor([[ 8.9082e-39,  1.0194e-38,  9.1837e-39],
        [ 8.4490e-39,  9.6429e-39,  8.4490e-39],
        [-2.0541e-05,  5.0727e-43, -2.0541e-05],
        [ 5.0727e-43, -2.1039e-05,  5.0727e-43]])

输入:

python 复制代码
print(torch.cat([a,b], dim=-1))
# 2. torch.cat((x,y),dim=1) :张量 X,Y按照行并排起来

输出:

python 复制代码
tensor([[ 8.9082e-39,  1.0194e-38,  9.1837e-39, -2.0541e-05,  5.0727e-43,
         -2.0541e-05],
        [ 8.4490e-39,  9.6429e-39,  8.4490e-39,  5.0727e-43, -2.1039e-05,
          5.0727e-43]])

总结:

torch.cat((x,y),dim=0) :张量 X,Y按照列堆起来
torch.cat((x,y),dim=1) :张量 X,Y按照行并排起来

相关推荐
姚瑞南10 分钟前
【AI 风向标】四种深度学习算法(CNN、RNN、GAN、RL)的通俗解释
人工智能·深度学习·算法
渡我白衣31 分钟前
深度学习入门(一)——从神经元到损失函数,一步步理解前向传播(上)
人工智能·深度学习·学习
一车小面包34 分钟前
对注意力机制的直观理解
人工智能·深度学习·机器学习
AI小云1 小时前
【Python与AI基础】Python编程基础:模块和包
人工智能·python
weixin_433417671 小时前
PyTorch&TensorFlow
人工智能·pytorch·tensorflow
努力努力再努力wz1 小时前
【C++进阶系列】:万字详解智能指针(附模拟实现的源码)
java·linux·c语言·开发语言·数据结构·c++·python
XZSSWJS1 小时前
深度学习基础-Chapter 02-Softmax与交叉熵
人工智能·深度学习
小蕾Java2 小时前
Python详细安装教程(附PyCharm使用)
开发语言·python·pycharm
ringking1232 小时前
BEVFUSION解读(五)
深度学习
weixin_307779132 小时前
使用AWS IAM和Python自动化权限策略分析与导出
开发语言·python·自动化·云计算·aws