torch.cat((A,B),dim=1)解析

官方说明torch.cat

引用自:Pytorch中的torch.cat()函数

python 复制代码
torch.cat(tensors, dim=0, *, out=None) → Tensor
# 连接给定维数的给定序列的序列张量。所有张量要么具有相同的形状(除了连接维度),要么为空。

示例

输入:

python 复制代码
import torch
a = torch.Tensor(2,3)   #  (2行,3列)
b = torch.Tensor(2,3)
print (a)
print (b)

输出:

python 复制代码
tensor([[8.9082e-39, 1.0194e-38, 9.1837e-39],
        [8.4490e-39, 9.6429e-39, 8.4490e-39]])
tensor([[-2.0541e-05,  5.0727e-43, -2.0541e-05],
        [ 5.0727e-43, -2.1039e-05,  5.0727e-43]])

输入:

python 复制代码
print(torch.cat([a,b], dim= 0))  
# 1. torch.cat((x,y),dim=0) :张量 X,Y按照列堆起来

输出:

python 复制代码
tensor([[ 8.9082e-39,  1.0194e-38,  9.1837e-39],
        [ 8.4490e-39,  9.6429e-39,  8.4490e-39],
        [-2.0541e-05,  5.0727e-43, -2.0541e-05],
        [ 5.0727e-43, -2.1039e-05,  5.0727e-43]])

输入:

python 复制代码
print(torch.cat([a,b], dim=-1))
# 2. torch.cat((x,y),dim=1) :张量 X,Y按照行并排起来

输出:

python 复制代码
tensor([[ 8.9082e-39,  1.0194e-38,  9.1837e-39, -2.0541e-05,  5.0727e-43,
         -2.0541e-05],
        [ 8.4490e-39,  9.6429e-39,  8.4490e-39,  5.0727e-43, -2.1039e-05,
          5.0727e-43]])

总结:

torch.cat((x,y),dim=0) :张量 X,Y按照列堆起来
torch.cat((x,y),dim=1) :张量 X,Y按照行并排起来

相关推荐
麦麦大数据1 小时前
MacOS 安装Python 3.13【同时保留旧版本】
开发语言·python·macos·python安装
梦想画家5 小时前
基于PyTorch的时间序列异常检测管道构建指南
人工智能·pytorch·python
PythonFun6 小时前
OCR图片识别翻译工具功能及源码
python·ocr·机器翻译
河南骏7 小时前
RAG_检索进阶
人工智能·深度学习
虫师c7 小时前
Python浪漫弹窗程序:Tkinter实现动态祝福窗口教程
python·tkinter·动画效果·gui编程·弹窗效果
灯火不休时8 小时前
95%准确率!CNN交通标志识别系统开源
人工智能·python·深度学习·神经网络·cnn·tensorflow
deephub8 小时前
FastMCP 入门:用 Python 快速搭建 MCP 服务器接入 LLM
服务器·人工智能·python·大语言模型·mcp
南宫乘风9 小时前
基于 Flask + APScheduler + MySQL 的自动报表系统设计
python·mysql·flask
番石榴AI9 小时前
基于机器学习优化的主图选择方法(酒店,景点,餐厅等APP上的主图展示推荐)
图像处理·人工智能·python·机器学习
qq7422349849 小时前
Python操作数据库之pyodbc
开发语言·数据库·python