降噪自编码器(Denoising Autoencoder)

降噪自编码器的基本原理如下:

  1. 给输入数据加上噪声。
  2. 用编码器将含有噪声的输入数据压缩成低维表示。
  3. 用解码器将低维表示恢复成原始数据。
  4. 训练网络使得解码器的输出尽可能接近原始数据,同 时编码器学会从噪声中学习特征。

降噪自编码器的目的是学习如何从受损的输入数据中恢复出干净的输出数据。

  1. 图像去噪。降噪自编码器可以用于去除图像中的高斯噪声或者均匀噪声。
  2. 数据预处理。在某些机器学习任务中,由于噪声或者缺失数据的存在,需要在输入数据上进行预处理,这时,可以使用降噪自编码器来提取干净的特征表征。
  3. 可视化特征表征。降噪自编码器可以学习无噪声输入数据的低维表示,这些低维表征可以用于图像生成、数据分类等任务。

原文参考https://www.python100.com/html/98VA526PT8WW.html

相关推荐
IMER SIMPLE5 小时前
人工智能-python-深度学习-经典神经网络AlexNet
人工智能·python·深度学习
UQI-LIUWJ8 小时前
unsloth笔记:运行&微调 gemma
人工智能·笔记·深度学习
THMAIL8 小时前
深度学习从入门到精通 - 生成对抗网络(GAN)实战:创造逼真图像的魔法艺术
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·cnn
北京地铁1号线8 小时前
GPT(Generative Pre-trained Transformer)模型架构与损失函数介绍
gpt·深度学习·transformer
fantasy_arch8 小时前
9.3深度循环神经网络
人工智能·rnn·深度学习
Shiyuan711 小时前
【检索通知】2025年IEEE第二届深度学习与计算机视觉国际会议检索
人工智能·深度学习·计算机视觉
cyyt13 小时前
深度学习周报(9.1~9.7)
人工智能·深度学习
max50060013 小时前
图像处理:实现多图点重叠效果
开发语言·图像处理·人工智能·python·深度学习·音视频
西猫雷婶16 小时前
scikit-learn/sklearn学习|广义线性回归损失函数的基本表达式
深度学习·神经网络·学习·机器学习·线性回归·scikit-learn·概率论
IMER SIMPLE17 小时前
人工智能-python-深度学习-神经网络-MobileNet V1&V2
人工智能·python·深度学习