降噪自编码器(Denoising Autoencoder)

降噪自编码器的基本原理如下:

  1. 给输入数据加上噪声。
  2. 用编码器将含有噪声的输入数据压缩成低维表示。
  3. 用解码器将低维表示恢复成原始数据。
  4. 训练网络使得解码器的输出尽可能接近原始数据,同 时编码器学会从噪声中学习特征。

降噪自编码器的目的是学习如何从受损的输入数据中恢复出干净的输出数据。

  1. 图像去噪。降噪自编码器可以用于去除图像中的高斯噪声或者均匀噪声。
  2. 数据预处理。在某些机器学习任务中,由于噪声或者缺失数据的存在,需要在输入数据上进行预处理,这时,可以使用降噪自编码器来提取干净的特征表征。
  3. 可视化特征表征。降噪自编码器可以学习无噪声输入数据的低维表示,这些低维表征可以用于图像生成、数据分类等任务。

原文参考https://www.python100.com/html/98VA526PT8WW.html

相关推荐
南七澄江2 小时前
各种网站(学习资源及其他)
开发语言·网络·python·深度学习·学习·机器学习·ai
Crossoads6 小时前
【汇编语言】端口 —— 「从端口到时间:一文了解CMOS RAM与汇编指令的交汇」
android·java·汇编·深度学习·网络协议·机器学习·汇编语言
凳子花❀8 小时前
强化学习与深度学习以及相关芯片之间的区别
人工智能·深度学习·神经网络·ai·强化学习
泰迪智能科技0110 小时前
高校深度学习视觉应用平台产品介绍
人工智能·深度学习
Jeremy_lf12 小时前
【生成模型之三】ControlNet & Latent Diffusion Models论文详解
人工智能·深度学习·stable diffusion·aigc·扩散模型
冰蓝蓝13 小时前
深度学习中的注意力机制:解锁智能模型的新视角
人工智能·深度学习
wydxry15 小时前
LoRA(Low-Rank Adaptation)模型微调
深度学习
IT古董17 小时前
【漫话机器学习系列】019.布里(莱)尔分数(Birer score)
人工智能·深度学习·机器学习
醒了就刷牙17 小时前
transformer用作分类任务
深度学习·分类·transformer
小陈phd18 小时前
深度学习实战之超分辨率算法(tensorflow)——ESPCN
网络·深度学习·神经网络·tensorflow