降噪自编码器(Denoising Autoencoder)

降噪自编码器的基本原理如下:

  1. 给输入数据加上噪声。
  2. 用编码器将含有噪声的输入数据压缩成低维表示。
  3. 用解码器将低维表示恢复成原始数据。
  4. 训练网络使得解码器的输出尽可能接近原始数据,同 时编码器学会从噪声中学习特征。

降噪自编码器的目的是学习如何从受损的输入数据中恢复出干净的输出数据。

  1. 图像去噪。降噪自编码器可以用于去除图像中的高斯噪声或者均匀噪声。
  2. 数据预处理。在某些机器学习任务中,由于噪声或者缺失数据的存在,需要在输入数据上进行预处理,这时,可以使用降噪自编码器来提取干净的特征表征。
  3. 可视化特征表征。降噪自编码器可以学习无噪声输入数据的低维表示,这些低维表征可以用于图像生成、数据分类等任务。

原文参考https://www.python100.com/html/98VA526PT8WW.html

相关推荐
Blossom.11830 分钟前
人工智能在智能家居中的应用与发展
人工智能·深度学习·机器学习·智能家居·vr·虚拟现实·多模态融合
HyperAI超神经1 小时前
12个HPC教程汇总!从入门到实战,覆盖分子模拟/材料计算/生物信息分析等多个领域
图像处理·人工智能·深度学习·生物信息·分子模拟·材料计算·vasp
进来有惊喜1 小时前
深度学习:迁移学习
python·深度学习
豆芽8192 小时前
图解YOLO(You Only Look Once)目标检测(v1-v5)
人工智能·深度学习·学习·yolo·目标检测·计算机视觉
北上ing2 小时前
从FP32到BF16,再到混合精度的全景解析
人工智能·pytorch·深度学习·计算机视觉·stable diffusion
蔗理苦3 小时前
2025-04-24 Python&深度学习4—— 计算图与动态图机制
开发语言·pytorch·python·深度学习·计算图
m0_678693333 小时前
深度学习笔记22-RNN心脏病预测(Tensorflow)
笔记·rnn·深度学习
Y1nhl9 小时前
搜广推校招面经八十一
开发语言·人工智能·pytorch·深度学习·机器学习·推荐算法·搜索算法
鸿蒙布道师12 小时前
OpenAI为何觊觎Chrome?AI时代浏览器争夺战背后的深层逻辑
前端·人工智能·chrome·深度学习·opencv·自然语言处理·chatgpt
何双新14 小时前
第1讲:Transformers 的崛起:从RNN到Self-Attention
人工智能·rnn·深度学习