VITS2来袭~

**论文:**VITS2: Improving Quality and Efficiency of Single-Stage Text-to-Speech with Adversarial Learning and Architecture Design

**演示:**https://vits-2.github.io/demo/

**论文:**https://arxiv.org/abs/2307.16430

目前仍然存在的问题:

  1. intermittent unnaturalness

  2. low efficiency of the duration predictor

  3. complex input format to alleviate the limitations of alignment and duration modeling (use of blank token)

  4. insufficient speaker similarity in the multi-speaker model

  5. slow training, and strong dependence on the phoneme conversion.

提出的方法:

  1. a stochastic duration predictor trained through adversarial learning

  2. normalizing flows improved by utilizing the transformer block

  3. a speaker-conditioned text encoder to model multiple speakers' characteristics better.

相关推荐
BSV区块链8 分钟前
如何在BSV区块链上实现可验证AI
人工智能·区块链
武子康25 分钟前
大数据-212 数据挖掘 机器学习理论 - 无监督学习算法 KMeans 基本原理 簇内误差平方和
大数据·人工智能·学习·算法·机器学习·数据挖掘
deephub26 分钟前
Tokenformer:基于参数标记化的高效可扩展Transformer架构
人工智能·python·深度学习·架构·transformer
Q81375746032 分钟前
数据挖掘在金融交易中的应用:民锋科技的智能化布局
人工智能·科技·数据挖掘
qzhqbb35 分钟前
语言模型的采样方法
人工智能·语言模型·自然语言处理
qzhqbb38 分钟前
基于 Transformer 的语言模型
人工智能·语言模型·自然语言处理·transformer
___Dream39 分钟前
【CTFN】基于耦合翻译融合网络的多模态情感分析的层次学习
人工智能·深度学习·机器学习·transformer·人机交互
极客代码1 小时前
【Python TensorFlow】入门到精通
开发语言·人工智能·python·深度学习·tensorflow
义小深1 小时前
TensorFlow|咖啡豆识别
人工智能·python·tensorflow
Tianyanxiao1 小时前
如何利用探商宝精准营销,抓住行业机遇——以AI技术与大数据推动企业信息精准筛选
大数据·人工智能·科技·数据分析·深度优先·零售