VITS2来袭~

**论文:**VITS2: Improving Quality and Efficiency of Single-Stage Text-to-Speech with Adversarial Learning and Architecture Design

**演示:**https://vits-2.github.io/demo/

**论文:**https://arxiv.org/abs/2307.16430

目前仍然存在的问题:

  1. intermittent unnaturalness

  2. low efficiency of the duration predictor

  3. complex input format to alleviate the limitations of alignment and duration modeling (use of blank token)

  4. insufficient speaker similarity in the multi-speaker model

  5. slow training, and strong dependence on the phoneme conversion.

提出的方法:

  1. a stochastic duration predictor trained through adversarial learning

  2. normalizing flows improved by utilizing the transformer block

  3. a speaker-conditioned text encoder to model multiple speakers' characteristics better.

相关推荐
掘金一周8 分钟前
金石焕新程 >> 瓜分万元现金大奖征文活动即将回归 | 掘金一周 4.3
前端·人工智能·后端
白雪讲堂24 分钟前
AI搜索品牌曝光资料包(精准适配文心一言/Kimi/DeepSeek等场景)
大数据·人工智能·搜索引擎·ai·文心一言·deepseek
斯汤雷30 分钟前
Matlab绘图案例,设置图片大小,坐标轴比例为黄金比
数据库·人工智能·算法·matlab·信息可视化
ejinxian37 分钟前
Spring AI Alibaba 快速开发生成式 Java AI 应用
java·人工智能·spring
葡萄成熟时_41 分钟前
【第十三届“泰迪杯”数据挖掘挑战赛】【2025泰迪杯】【代码篇】A题解题全流程(持续更新)
人工智能·数据挖掘
机器之心1 小时前
一篇论文,看见百度广告推荐系统在大模型时代的革新
人工智能
机器之心1 小时前
视觉SSL终于追上了CLIP!Yann LeCun、谢赛宁等新作,逆转VQA任务固有认知
人工智能