信号处理--基于EEG脑电信号的眼睛状态的分析

本实验为生物信息学专题设计小项目。项目目的是通过提供的14导联EEG 脑电信号,实现对于人体睁眼和闭眼两个状态的数据分类分析。每个脑电信号的时长大约为117秒。

目录

加载相关的库函数

读取脑电信号数据并查看数据的属性

绘制脑电多通道连接矩阵

绘制两类数据的相对占比

数据集划分和预处理

模型定义及可视化

模型训练及训练可视化

模型评价


加载相关的库函数

python 复制代码
import tensorflow.compat.v1 as tf
from sklearn.metrics import confusion_matrix
import numpy as np
from scipy.io import loadmat
import os
from pywt import wavedec
from functools import reduce
from scipy import signal
from scipy.stats import entropy
from scipy.fft import fft, ifft
import pandas as pd
from sklearn.model_selection import train_test_split, StratifiedKFold
from sklearn.preprocessing import StandardScaler
from tensorflow import keras as K
import matplotlib.pyplot as plt
import scipy
from sklearn import metrics
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
from sklearn.model_selection import KFold,cross_validate
from tensorflow.keras.layers import Dense, Activation, Flatten, concatenate, Input, Dropout, LSTM, Bidirectional,BatchNormalization,PReLU,ReLU,Reshape
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.metrics import classification_report
from tensorflow.keras.models import Sequential, Model, load_model
import matplotlib.pyplot as plt;
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
from sklearn.decomposition import PCA
from tensorflow import keras
from sklearn.model_selection import cross_val_score
from tensorflow.keras.layers import Conv1D,Conv2D,Add
from tensorflow.keras.layers import MaxPool1D, MaxPooling2D
import seaborn as sns

import warnings
warnings.filterwarnings('ignore')

读取脑电信号数据并查看数据的属性

python 复制代码
df = pd.read_csv("../input/eye-state-classification-eeg-dataset/EEG_Eye_State_Classification.csv")

df.info()

绘制脑电多通道连接矩阵

python 复制代码
plt.figure(figsize = (15,15))
cor_matrix = df.corr()
sns.heatmap(cor_matrix,annot=True)

绘制两类数据的相对占比

python 复制代码
# Plotting target distribution 
plt.figure(figsize=(6,6))
df['eyeDetection'].value_counts().plot.pie(explode=[0.1,0.1], autopct='%1.1f%%', shadow=True, textprops={'fontsize':16}).set_title("Target distribution")

数据集划分和预处理

python 复制代码
data = df.copy()
y= data.pop('eyeDetection')
x= data


x_new = StandardScaler().fit_transform(x)

x_new = pd.DataFrame(x_new) 
x_new.columns = x.columns


x_train,x_test,y_train,y_test = train_test_split(x_new,y,test_size=0.15)

x_train = np.array(x_train).reshape(-1,14,1)
x_test = np.array(x_test).reshape(-1,14,1)

模型定义及可视化

python 复制代码
inputs = tf.keras.Input(shape=(14,1))

Dense1 = Dense(64, activation = 'relu',kernel_regularizer=keras.regularizers.l2())(inputs)

#Dense2 = Dense(128, activation = 'relu',kernel_regularizer=keras.regularizers.l2())(Dense1)
#Dense3 = Dense(256, activation = 'relu',kernel_regularizer=keras.regularizers.l2())(Dense2)

lstm_1=  Bidirectional(LSTM(256, return_sequences = True))(Dense1)
drop = Dropout(0.3)(lstm_1)
lstm_3=  Bidirectional(LSTM(128, return_sequences = True))(drop)
drop2 = Dropout(0.3)(lstm_3)

flat = Flatten()(drop2)

#Dense_1 = Dense(256, activation = 'relu')(flat)

Dense_2 = Dense(128, activation = 'relu')(flat)
outputs = Dense(1, activation='sigmoid')(Dense_2)

model = tf.keras.Model(inputs, outputs)

model.summary()

tf.keras.utils.plot_model(model)



def train_model(model,x_train, y_train,x_test,y_test, save_to, epoch = 2):

        opt_adam = keras.optimizers.Adam(learning_rate=0.001)

        es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=10)
        mc = ModelCheckpoint(save_to + '_best_model.h5', monitor='val_accuracy', mode='max', verbose=1, save_best_only=True)
        lr_schedule = tf.keras.callbacks.LearningRateScheduler(lambda epoch: 0.001 * np.exp(-epoch / 10.))
        
        model.compile(optimizer=opt_adam,
                  loss=['binary_crossentropy'],
                  metrics=['accuracy'])
        
        history = model.fit(x_train,y_train,
                        batch_size=20,
                        epochs=epoch,
                        validation_data=(x_test,y_test),
                        callbacks=[es,mc,lr_schedule])
        
        saved_model = load_model(save_to + '_best_model.h5')
        
        return model,history

模型训练及训练可视化

python 复制代码
model,history = train_model(model, x_train, y_train,x_test, y_test, save_to= './', epoch = 100)


plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()

模型评价

python 复制代码
y_pred =model.predict(x_test)
y_pred = np.array(y_pred >= 0.5, dtype = np.int)
confusion_matrix(y_test, y_pred)



print(classification_report(y_test, y_pred))
相关推荐
极客BIM工作室几秒前
遗传算法属于机器学习吗?
人工智能·机器学习
槐夏十八10 分钟前
Suno API 的对接和使用
人工智能
guidovans12 分钟前
Crawl4AI精准提取结构化数据
人工智能·python·tensorflow
虫无涯38 分钟前
Dify调用硅基流动中模型时,流程编排中运行模型不显示思考过程,如何解决?
人工智能
猫天意42 分钟前
【CVPR2025-DEIM】基础课程二十:顶会中的Partial创新思想,随意包装你想包装的!
图像处理·人工智能·yolo·计算机视觉·matlab
DDC楼宇自控与IBMS集成系统解读1 小时前
IBMS智能化集成系统:构建建筑全场景协同管控中枢
大数据·网络·人工智能·能耗监测系统·ibms智能化集成系统·楼宇自控系统·智能照明系统
SimonSkywalke1 小时前
STS_Root_Cause_Analysis_Error.ipynb 工作流程解析
运维·人工智能
shao9185161 小时前
Gradio全解11——Streaming:流式传输的视频应用(5)——RT-DETR:实时端到端检测模型
人工智能·nms·objects365·rt-detr·rt-detrv2·高效混合编码器·iou交并比
chanalbert1 小时前
信息检索技术综述:从传统稀疏检索到现代深度学习方法
人工智能·深度学习·全文检索
vivo互联网技术1 小时前
聚焦结构化注意力,探索提升多模态大模型文档问答性能
人工智能