信号处理--基于EEG脑电信号的眼睛状态的分析

本实验为生物信息学专题设计小项目。项目目的是通过提供的14导联EEG 脑电信号,实现对于人体睁眼和闭眼两个状态的数据分类分析。每个脑电信号的时长大约为117秒。

目录

加载相关的库函数

读取脑电信号数据并查看数据的属性

绘制脑电多通道连接矩阵

绘制两类数据的相对占比

数据集划分和预处理

模型定义及可视化

模型训练及训练可视化

模型评价


加载相关的库函数

python 复制代码
import tensorflow.compat.v1 as tf
from sklearn.metrics import confusion_matrix
import numpy as np
from scipy.io import loadmat
import os
from pywt import wavedec
from functools import reduce
from scipy import signal
from scipy.stats import entropy
from scipy.fft import fft, ifft
import pandas as pd
from sklearn.model_selection import train_test_split, StratifiedKFold
from sklearn.preprocessing import StandardScaler
from tensorflow import keras as K
import matplotlib.pyplot as plt
import scipy
from sklearn import metrics
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
from sklearn.model_selection import KFold,cross_validate
from tensorflow.keras.layers import Dense, Activation, Flatten, concatenate, Input, Dropout, LSTM, Bidirectional,BatchNormalization,PReLU,ReLU,Reshape
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.metrics import classification_report
from tensorflow.keras.models import Sequential, Model, load_model
import matplotlib.pyplot as plt;
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
from sklearn.decomposition import PCA
from tensorflow import keras
from sklearn.model_selection import cross_val_score
from tensorflow.keras.layers import Conv1D,Conv2D,Add
from tensorflow.keras.layers import MaxPool1D, MaxPooling2D
import seaborn as sns

import warnings
warnings.filterwarnings('ignore')

读取脑电信号数据并查看数据的属性

python 复制代码
df = pd.read_csv("../input/eye-state-classification-eeg-dataset/EEG_Eye_State_Classification.csv")

df.info()

绘制脑电多通道连接矩阵

python 复制代码
plt.figure(figsize = (15,15))
cor_matrix = df.corr()
sns.heatmap(cor_matrix,annot=True)

绘制两类数据的相对占比

python 复制代码
# Plotting target distribution 
plt.figure(figsize=(6,6))
df['eyeDetection'].value_counts().plot.pie(explode=[0.1,0.1], autopct='%1.1f%%', shadow=True, textprops={'fontsize':16}).set_title("Target distribution")

数据集划分和预处理

python 复制代码
data = df.copy()
y= data.pop('eyeDetection')
x= data


x_new = StandardScaler().fit_transform(x)

x_new = pd.DataFrame(x_new) 
x_new.columns = x.columns


x_train,x_test,y_train,y_test = train_test_split(x_new,y,test_size=0.15)

x_train = np.array(x_train).reshape(-1,14,1)
x_test = np.array(x_test).reshape(-1,14,1)

模型定义及可视化

python 复制代码
inputs = tf.keras.Input(shape=(14,1))

Dense1 = Dense(64, activation = 'relu',kernel_regularizer=keras.regularizers.l2())(inputs)

#Dense2 = Dense(128, activation = 'relu',kernel_regularizer=keras.regularizers.l2())(Dense1)
#Dense3 = Dense(256, activation = 'relu',kernel_regularizer=keras.regularizers.l2())(Dense2)

lstm_1=  Bidirectional(LSTM(256, return_sequences = True))(Dense1)
drop = Dropout(0.3)(lstm_1)
lstm_3=  Bidirectional(LSTM(128, return_sequences = True))(drop)
drop2 = Dropout(0.3)(lstm_3)

flat = Flatten()(drop2)

#Dense_1 = Dense(256, activation = 'relu')(flat)

Dense_2 = Dense(128, activation = 'relu')(flat)
outputs = Dense(1, activation='sigmoid')(Dense_2)

model = tf.keras.Model(inputs, outputs)

model.summary()

tf.keras.utils.plot_model(model)



def train_model(model,x_train, y_train,x_test,y_test, save_to, epoch = 2):

        opt_adam = keras.optimizers.Adam(learning_rate=0.001)

        es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=10)
        mc = ModelCheckpoint(save_to + '_best_model.h5', monitor='val_accuracy', mode='max', verbose=1, save_best_only=True)
        lr_schedule = tf.keras.callbacks.LearningRateScheduler(lambda epoch: 0.001 * np.exp(-epoch / 10.))
        
        model.compile(optimizer=opt_adam,
                  loss=['binary_crossentropy'],
                  metrics=['accuracy'])
        
        history = model.fit(x_train,y_train,
                        batch_size=20,
                        epochs=epoch,
                        validation_data=(x_test,y_test),
                        callbacks=[es,mc,lr_schedule])
        
        saved_model = load_model(save_to + '_best_model.h5')
        
        return model,history

模型训练及训练可视化

python 复制代码
model,history = train_model(model, x_train, y_train,x_test, y_test, save_to= './', epoch = 100)


plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()

模型评价

python 复制代码
y_pred =model.predict(x_test)
y_pred = np.array(y_pred >= 0.5, dtype = np.int)
confusion_matrix(y_test, y_pred)



print(classification_report(y_test, y_pred))
相关推荐
Mixtral1 小时前
2026年春招复盘记录工具测评:告别手动整理,AI自动生成求职总结
人工智能·面试·职场和发展·语音转文字·ai语音转文字
哥布林学者5 小时前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入(五)GloVe 算法
深度学习·ai
kuiini6 小时前
模型转换、加速与推理优化【Plan 8】
深度学习
Quintus五等升6 小时前
深度学习④|分类任务—VGG13
人工智能·经验分享·深度学习·神经网络·学习·机器学习·分类
2501_936146046 小时前
小型机械零件识别与分类--基于YOLO12-A2C2f-DFFN-DYT模型的创新实现
人工智能·分类·数据挖掘
天天讯通7 小时前
金融邀约实时质检:呼叫监控赋能客服主管
人工智能·金融
飞Link7 小时前
深度解析 MSER 最大稳定极值区域算法
人工智能·opencv·算法·计算机视觉
夜勤月7 小时前
给AI装上“文件之手”:深入解析MCP文件系统服务的安全沙箱与读写实践
人工智能·安全
万物得其道者成7 小时前
UI UX Pro Max: AI 驱动的设计系统生成引擎深度解析
人工智能·ui·ux
码农三叔7 小时前
(3-2)机器人身体结构与人体仿生学:人形机器人躯干系统
人工智能·架构·机器人·人形机器人