信号处理--基于EEG脑电信号的眼睛状态的分析

本实验为生物信息学专题设计小项目。项目目的是通过提供的14导联EEG 脑电信号,实现对于人体睁眼和闭眼两个状态的数据分类分析。每个脑电信号的时长大约为117秒。

目录

加载相关的库函数

读取脑电信号数据并查看数据的属性

绘制脑电多通道连接矩阵

绘制两类数据的相对占比

数据集划分和预处理

模型定义及可视化

模型训练及训练可视化

模型评价


加载相关的库函数

python 复制代码
import tensorflow.compat.v1 as tf
from sklearn.metrics import confusion_matrix
import numpy as np
from scipy.io import loadmat
import os
from pywt import wavedec
from functools import reduce
from scipy import signal
from scipy.stats import entropy
from scipy.fft import fft, ifft
import pandas as pd
from sklearn.model_selection import train_test_split, StratifiedKFold
from sklearn.preprocessing import StandardScaler
from tensorflow import keras as K
import matplotlib.pyplot as plt
import scipy
from sklearn import metrics
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
from sklearn.model_selection import KFold,cross_validate
from tensorflow.keras.layers import Dense, Activation, Flatten, concatenate, Input, Dropout, LSTM, Bidirectional,BatchNormalization,PReLU,ReLU,Reshape
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.metrics import classification_report
from tensorflow.keras.models import Sequential, Model, load_model
import matplotlib.pyplot as plt;
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
from sklearn.decomposition import PCA
from tensorflow import keras
from sklearn.model_selection import cross_val_score
from tensorflow.keras.layers import Conv1D,Conv2D,Add
from tensorflow.keras.layers import MaxPool1D, MaxPooling2D
import seaborn as sns

import warnings
warnings.filterwarnings('ignore')

读取脑电信号数据并查看数据的属性

python 复制代码
df = pd.read_csv("../input/eye-state-classification-eeg-dataset/EEG_Eye_State_Classification.csv")

df.info()

绘制脑电多通道连接矩阵

python 复制代码
plt.figure(figsize = (15,15))
cor_matrix = df.corr()
sns.heatmap(cor_matrix,annot=True)

绘制两类数据的相对占比

python 复制代码
# Plotting target distribution 
plt.figure(figsize=(6,6))
df['eyeDetection'].value_counts().plot.pie(explode=[0.1,0.1], autopct='%1.1f%%', shadow=True, textprops={'fontsize':16}).set_title("Target distribution")

数据集划分和预处理

python 复制代码
data = df.copy()
y= data.pop('eyeDetection')
x= data


x_new = StandardScaler().fit_transform(x)

x_new = pd.DataFrame(x_new) 
x_new.columns = x.columns


x_train,x_test,y_train,y_test = train_test_split(x_new,y,test_size=0.15)

x_train = np.array(x_train).reshape(-1,14,1)
x_test = np.array(x_test).reshape(-1,14,1)

模型定义及可视化

python 复制代码
inputs = tf.keras.Input(shape=(14,1))

Dense1 = Dense(64, activation = 'relu',kernel_regularizer=keras.regularizers.l2())(inputs)

#Dense2 = Dense(128, activation = 'relu',kernel_regularizer=keras.regularizers.l2())(Dense1)
#Dense3 = Dense(256, activation = 'relu',kernel_regularizer=keras.regularizers.l2())(Dense2)

lstm_1=  Bidirectional(LSTM(256, return_sequences = True))(Dense1)
drop = Dropout(0.3)(lstm_1)
lstm_3=  Bidirectional(LSTM(128, return_sequences = True))(drop)
drop2 = Dropout(0.3)(lstm_3)

flat = Flatten()(drop2)

#Dense_1 = Dense(256, activation = 'relu')(flat)

Dense_2 = Dense(128, activation = 'relu')(flat)
outputs = Dense(1, activation='sigmoid')(Dense_2)

model = tf.keras.Model(inputs, outputs)

model.summary()

tf.keras.utils.plot_model(model)



def train_model(model,x_train, y_train,x_test,y_test, save_to, epoch = 2):

        opt_adam = keras.optimizers.Adam(learning_rate=0.001)

        es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=10)
        mc = ModelCheckpoint(save_to + '_best_model.h5', monitor='val_accuracy', mode='max', verbose=1, save_best_only=True)
        lr_schedule = tf.keras.callbacks.LearningRateScheduler(lambda epoch: 0.001 * np.exp(-epoch / 10.))
        
        model.compile(optimizer=opt_adam,
                  loss=['binary_crossentropy'],
                  metrics=['accuracy'])
        
        history = model.fit(x_train,y_train,
                        batch_size=20,
                        epochs=epoch,
                        validation_data=(x_test,y_test),
                        callbacks=[es,mc,lr_schedule])
        
        saved_model = load_model(save_to + '_best_model.h5')
        
        return model,history

模型训练及训练可视化

python 复制代码
model,history = train_model(model, x_train, y_train,x_test, y_test, save_to= './', epoch = 100)


plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()

模型评价

python 复制代码
y_pred =model.predict(x_test)
y_pred = np.array(y_pred >= 0.5, dtype = np.int)
confusion_matrix(y_test, y_pred)



print(classification_report(y_test, y_pred))
相关推荐
終不似少年遊*31 分钟前
数学知识1
人工智能·学习·算法·机器学习·数学建模
pumpkin8451431 分钟前
Ray 和 PyTorch
人工智能·pytorch·python
Evaporator Core1 小时前
深度学习中的经典模型:卷积神经网络(CNN)基础与实现
人工智能·深度学习·cnn
学不会lostfound1 小时前
三、计算机视觉_06YOLO基础知识
人工智能·深度学习·yolo·计算机视觉·ultralytic
roman_日积跬步-终至千里1 小时前
【人工智能基础】自然语言处理基础
人工智能·自然语言处理
AI小杨1 小时前
【数据挖掘】一、基于LDA的用户兴趣建模(兴趣标签生成模型)--用户兴趣挖掘模型
人工智能·数据挖掘·lda·用户兴趣标签生成模型·主题挖掘
-Max-静-1 小时前
Paddle Inference部署推理(七)
人工智能·深度学习·paddle
-Max-静-1 小时前
Paddle Inference部署推理(十六)
人工智能·深度学习·paddle·推理 部署
JovaZou1 小时前
[2024.11.17-24] 一周科技速报
人工智能·科技·ai·ar
大数据AI人工智能培训专家培训讲师叶梓1 小时前
ECLAIR:利用基础模型实现企业自动化
运维·人工智能·语言模型·自然语言处理·自动化·大模型·多模态