机器学习算法之-逻辑回归(2)

为什么需要逻辑回归

拟合效果太好

特征与标签之间的线性关系极强的数据,比如金融领域中的 信用卡欺诈,评分卡制作,电商中的营销预测等等相关的数据,都是逻辑回归的强项。虽然现在有了梯度提升树GDBT,比逻辑回归效果更好,也被许多数据咨询公司启用,但逻辑回归在金融领域,尤其是银行业中的统治地位依然不可动摇(相对的,逻辑回归在非线性数据的效果很多时候比瞎猜还不如,所以如果你已经知道数据之间的联系是非线性的,千万不要迷信逻辑回归);

逻辑回归计算快

对于线性数据,逻辑回归的拟合和计算都非常快,计算效率优于SVM和随机森林,亲测表 示在大型数据上尤其能够看得出区别

逻辑回归返回的分类结果不是固定的01,而是以小数形式呈现的类概率数字

我们因此可以把逻辑回归返回的结果当成连续型数据来利用。比如在评分卡制作时,我们不仅需要判断客户是否会违约,还需要给出确定的"信用分",而这个信用分的计算就需要使用类概率计算出的对数几率,而决策树和随机森林这样的分类器,可以产出分类结果,却无法帮助我们计算分数(当然,在sklearn中,决策树也可以产生概率,使用接口 predict_proba调用就好,但一般来说,正常的决策树没有这个功能)。

sklearn****中的逻辑回归

相关推荐
算法狗23 小时前
大模型面试题:在混合精度训练中如何选择合适的精度
人工智能·深度学习·机器学习·语言模型
CoovallyAIHub3 小时前
AAAI 2026这篇杰出论文说了什么?用LLM给CLIP换了个“聪明大脑”
深度学习·算法·计算机视觉
DuHz3 小时前
通过超宽带信号估计位置——论文精读
论文阅读·人工智能·机器学习·自动驾驶·汽车
Physicist in Geophy.3 小时前
一维波动方程(从变分法角度)
线性代数·算法·机器学习
im_AMBER3 小时前
Leetcode 115 分割链表 | 随机链表的复制
数据结构·学习·算法·leetcode
Liue612312313 小时前
【YOLO11】基于C2CGA算法的金属零件涂胶缺陷检测与分类
人工智能·算法·分类
!!!!8133 小时前
蓝桥备赛Day1
数据结构·算法
Mr_Xuhhh3 小时前
介绍一下ref
开发语言·c++·算法
硅谷秋水3 小时前
REALM:用于机器人操作泛化能力的真实-仿真验证基准测试
人工智能·机器学习·计算机视觉·语言模型·机器人
夏鹏今天学习了吗3 小时前
【LeetCode热题100(99/100)】柱状图中最大的矩形
算法·leetcode·职场和发展