机器学习算法之-逻辑回归(2)

为什么需要逻辑回归

拟合效果太好

特征与标签之间的线性关系极强的数据,比如金融领域中的 信用卡欺诈,评分卡制作,电商中的营销预测等等相关的数据,都是逻辑回归的强项。虽然现在有了梯度提升树GDBT,比逻辑回归效果更好,也被许多数据咨询公司启用,但逻辑回归在金融领域,尤其是银行业中的统治地位依然不可动摇(相对的,逻辑回归在非线性数据的效果很多时候比瞎猜还不如,所以如果你已经知道数据之间的联系是非线性的,千万不要迷信逻辑回归);

逻辑回归计算快

对于线性数据,逻辑回归的拟合和计算都非常快,计算效率优于SVM和随机森林,亲测表 示在大型数据上尤其能够看得出区别

逻辑回归返回的分类结果不是固定的01,而是以小数形式呈现的类概率数字

我们因此可以把逻辑回归返回的结果当成连续型数据来利用。比如在评分卡制作时,我们不仅需要判断客户是否会违约,还需要给出确定的"信用分",而这个信用分的计算就需要使用类概率计算出的对数几率,而决策树和随机森林这样的分类器,可以产出分类结果,却无法帮助我们计算分数(当然,在sklearn中,决策树也可以产生概率,使用接口 predict_proba调用就好,但一般来说,正常的决策树没有这个功能)。

sklearn****中的逻辑回归

相关推荐
尤超宇11 分钟前
YOLOv3 目标检测算法核心技术
算法·yolo·目标检测
星期天要睡觉28 分钟前
深度学习——基于 ResNet18 的图像分类训练
pytorch·python·机器学习
cyclel33 分钟前
散列表的小想法
算法
koo36435 分钟前
李宏毅机器学习笔记25
人工智能·笔记·机器学习
Code小翊37 分钟前
堆的基础操作,C语言示例
java·数据结构·算法
余俊晖37 分钟前
如何让多模态大模型学会“自动思考”-R-4B训练框架核心设计与训练方法
人工智能·算法·机器学习
hzp66638 分钟前
Magnus:面向大规模机器学习工作负载的综合数据管理方法
人工智能·深度学习·机器学习·大模型·llm·数据湖·大数据存储
Emilia486.44 分钟前
【Leetcode&nowcode&数据结构】顺序表的应用
数据结构·算法·leetcode
一水鉴天1 小时前
整体设计 逻辑系统程序 之27 拼语言整体设计 9 套程序架构优化与核心组件(CNN 改造框架 / Slave/Supervisor/ 数学工具)协同设计
人工智能·算法
小年糕是糕手1 小时前
【数据结构】双向链表“0”基础知识讲解 + 实战演练
c语言·开发语言·数据结构·c++·学习·算法·链表