85-最大矩阵

题目

给定一个仅包含 0 和 1 、大小为 rows x cols 的二维二进制矩阵,找出只包含 1 的最大矩形,并返回其面积。

示例 1:

输入:matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]

输出:6

解释:最大矩形如上图所示。

示例 2:

输入:matrix = []

输出:0

示例 3:

输入:matrix = [["0"]]

输出:0

示例 4:

输入:matrix = [["1"]]

输出:1

示例 5:

输入:matrix = [["0","0"]]

输出:0

思路

最大矩形面积问题可以使用栈来解决,结合柱状图的特性。下面我将详细解释解题思路,并提供关键算法和算法思想的说明。

解题思路:

对于每一行,我们可以将每个元素的值视为当前位置向上的高度。我们可以根据每一行的高度构建一个柱状图,然后使用栈来计算柱状图中的最大矩形面积。

  1. 对于每一行,我们构建一个高度数组 heights,其中 heights[j] 表示从当前行的第 j 列向上的连续 1 的数量。我们可以根据上一行的高度数组和当前行的元素来更新这个数组。

  2. 对于 heights 数组,我们使用栈来辅助计算最大矩形面积。我们遍历 heights 数组,如果当前高度大于栈顶高度,就将当前索引入栈。否则,我们弹出栈顶索引,并计算以该高度为高的矩形面积,宽度为当前索引与弹出索引之间的距离。我们不断更新最大面积,直到栈为空或者当前高度大于栈顶高度。

关键算法和算法思想:

栈是解决这个问题的关键算法思想。通过使用栈,我们可以维护一个递增的高度序列,当遇到下降的高度时,我们可以计算以当前高度为高的矩形面积,利用栈中保存的索引信息。

代码

scala 复制代码
object Solution {
    def maximalRectangle(matrix: Array[Array[Char]]): Int = {
        if (matrix.isEmpty) return 0
        
        val rows = matrix.length
        val cols = matrix(0).length
        var maxArea = 0
        val heights = Array.fill(cols)(0)
        
        def largestRectangleArea(heights: Array[Int]): Int = {
            val stack = collection.mutable.Stack[Int]()
            var maxArea = 0
            
            for (i <- 0 until heights.length) {
                while (stack.nonEmpty && heights(i) < heights(stack.top)) {
                    val height = heights(stack.pop())
                    val width = if (stack.isEmpty) i else i - stack.top - 1
                    maxArea = math.max(maxArea, height * width)
                }
                stack.push(i)
            }
            
            while (stack.nonEmpty) {
                val height = heights(stack.pop())
                val width = if (stack.isEmpty) heights.length else heights.length - stack.top - 1
                maxArea = math.max(maxArea, height * width)
            }
            
            maxArea
        }
        
        for (i <- 0 until rows) {
            for (j <- 0 until cols) {
                if (matrix(i)(j) == '1') heights(j) += 1
                else heights(j) = 0
            }
            maxArea = math.max(maxArea, largestRectangleArea(heights))
        }
        
        maxArea
    }
}

// 示例
val matrix = Array(
    Array('1','0','1','0','0'),
    Array('1','0','1','1','1'),
    Array('1','1','1','1','1'),
    Array('1','0','0','1','0')
)
val result = Solution.maximalRectangle(matrix)
println(result) // 输出:6
相关推荐
啊阿狸不会拉杆14 分钟前
《机器学习导论》第 5 章-多元方法
人工智能·python·算法·机器学习·numpy·matplotlib·多元方法
R1nG8631 小时前
CANN资源泄漏检测工具源码深度解读 实战设备内存泄漏排查
数据库·算法·cann
_OP_CHEN1 小时前
【算法基础篇】(五十六)容斥原理指南:从集合计数到算法实战,解决组合数学的 “重叠难题”!
算法·蓝桥杯·c/c++·组合数学·容斥原理·算法竞赛·acm/icpc
TracyCoder1231 小时前
LeetCode Hot100(27/100)——94. 二叉树的中序遍历
算法·leetcode
九.九1 小时前
CANN HCOMM 底层机制深度解析:集合通信算法实现、RoCE 网络协议栈优化与多级同步原语
网络·网络协议·算法
深鱼~2 小时前
大模型底层算力支撑:ops-math在矩阵乘法上的优化
人工智能·线性代数·矩阵·cann
C++ 老炮儿的技术栈2 小时前
Qt Creator中不写代如何设置 QLabel的颜色
c语言·开发语言·c++·qt·算法
Zfox_2 小时前
CANN PyPTO 编程范式深度解析:并行张量与 Tile 分块操作的架构原理、内存控制与流水线调度机制
线性代数·矩阵·架构
TechWJ2 小时前
catlass深度解析:Ascend平台的高性能矩阵运算模板库
线性代数·矩阵·ascend·cann·catlass
子春一2 小时前
Flutter for OpenHarmony:构建一个 Flutter 数字消消乐游戏,深入解析网格状态管理、合并算法与重力系统
算法·flutter·游戏