GEE-PIE遥感大数据处理与典型案例教程

详情点击链接:GEE-PIE遥感大数据处理与典型案例教程

一: GEE和PIE 遥感云平台

1.GEE和PIE平台及典型应用案例

2.JavaScript基础,包括变量,运算符,数组,判断及循环语句等

3.遥感云重要概念与典型数据分析流程

4.遥感云基本对象及平台上手

4.1 影像与影像集

4.2 几何体、要素与要素集

4.3 日期、字符、数字

4.4 数组、列表、字典

4.5 影像/影像集、要素/要素集数据查询、时空过滤、可视化、属性查看等主要对象最常用API

二: GEE和PIE影像大数据处理基础

1.1. 关键知识点

1.1.1 影像数学运算、关系/条件/布尔运算、形态滤波、纹理特征提取等

1.1.2 影像掩码,裁剪和镶嵌

1.1.3 集合对象的循环迭代(map/iterate)

1.1.4 集合对象联合(Join)

1.1.5 影像面向对象分析

2.2. 主要功能

2.2.1 Landsat/Sentinel-2影像批量去云

2.2.2 Landsat/Sentinel-2传感器归一化、植被指数计算等

2.2.3 时间序列光学影像的平滑与空间插值

三: 数据整合Reduce

1.关键知识点

1.1 影像与影像集整合,如指定时窗的年度影像合成

1.2 影像区域统计与领域统计,分类后处理

1.3 要素集属性列统计

1.4 栅格与矢量的相互转换

1.5 分组整合与区域统计

1.6 影像集、影像和要素集的线性回归分析

2.主要功能

2.1 研究区可用Landsat影像的数量和无云观测数量的统计分析

2.2 中国区域年度NDVI植被数合成及年度最绿的DOY时间查找

2.3 国家尺度30年尺度的降雨量时空变化趋势分析

四: 云端数据可视化

1.关键知识点

1.1 要素与要素集属性制图(条形图、直方图、堆积柱形图、散点图等)

1.2 影像制图(区域统计、分类图、直方图、散点图、线型图,饼图等)

1.3 影像集制图(样点时间序列图、区域统计时间序列图等)

1.4 数组与链表制图(散点图、样线图等)

1.5 图形风格和属性设置

2.主要功能

2.1 基于MODIS时间序列影像的不同地表植被物候分析与制图

2.2 基于Hansen产品的年度森林时空变化分析与专题图绘制

五: 数据导入导出 及资产管理

1.关键知识点

1.1 不同矢量数据上传个人资产

1.2 影像数据上传个人资产、属性设置等

1.3 影像批量导出(Asset和Driver)

1.4 矢量数据导出(Asset和Driver)

1.5 空间统计分析结果导出

2.主要功能

2.1 PIE平台国产卫星数据下载

2.2 影像合成批量导出及下载

2.3 地面样地对应遥感指标数据导出

六: 机器学习算法

1.关键知识点

1.1 样本抽样(随机抽样、分层随机抽样)

1.2 监督分类算法(随机森林、CART、贝叶斯、SVM、决策树等)

1.3 非监督分类算法(wekaKMeans、wekaLVQ等)

1.4 分类精度评估

2.主要功能

2.1 联合光学与雷达时间序列影像的森林动态监测

2.2 水体自动提取与洪涝监测

七:

1.G EE **土地利用分类综合案例,**实现主要功能,包括地面样本准备、多源遥感影像预处理、算法开发、分类后处理、精度评估和空间统计分析与制图等环节

2.经典P IE 案例代码

2.1 夜间灯光指数提取

2.2 长时间尺度植被覆盖度反演

2.3 水域动态监测

2.4 农作物种植面积提取

2.5 荒漠化程度提取

3.人口密度动态变化分析

3.1 GEE与PIE平台切换、代码优化、常见错误与调试总结

相关推荐
格调UI成品22 分钟前
从混乱到秩序:探索管理系统如何彻底改变工作流程
信息可视化·交互
Blossom.11831 分钟前
使用Python和OpenCV实现图像识别与目标检测
人工智能·python·神经网络·opencv·安全·目标检测·机器学习
小邹子1 小时前
抑郁症患者数据分析
python·信息可视化·数据分析
kuiini3 小时前
机器学习笔记【Week7】
机器学习·支持向量机
giszz4 小时前
【AI】智驾地图在不同自动驾驶等级中的作用演变
人工智能·机器学习·自动驾驶
十三画者4 小时前
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
python·机器学习·数据挖掘·数据分析·r语言·数据可视化
Work(沉淀版)8 小时前
DAY 40
人工智能·深度学习·机器学习
A林玖13 小时前
【机器学习】主成分分析 (PCA)
人工智能·机器学习
molunnnn13 小时前
DAY 15 复习日
机器学习
pen-ai14 小时前
【统计方法】基础分类器: logistic, knn, svm, lda
算法·机器学习·支持向量机