Retrieval-Augmented Multimodal Language Modeling

本文是LLM系列文章,针对《Retrieval-Augmented Multimodal Language Modeling》的翻译。

检索增强的多模态语言建模

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 方法](#3 方法)
  • [4 实验](#4 实验)
  • [5 定性结果](#5 定性结果)
  • [6 结论](#6 结论)

摘要

最近的多模态模型,如DALL-E和CM3,在文本到图像和图像到文本生成方面取得了显著进展。然而,这些模型将其所有知识(例如,埃菲尔铁塔的外观)存储在模型参数中,需要越来越大的模型和训练数据来获取更多的知识。为了以更具可扩展性和模块化的方式集成知识,我们提出了一种检索增强的多模态模型,该模型使基础多模态模型(生成器)能够引用检索器从外部存储器(例如,网络上的文档)中提取的相关文本和图像。具体来说,对于检索器,我们使用预训练的CLIP,对于生成器,我们在LAION数据集上训练CM3 Transformer。我们得到的模型名为Retrieval Augmented CM3(RA-CM3),是第一个可以检索和生成文本和图像的多模态模型。我们发现,RA-CM3在图像和字幕生成任务上显著优于基线多模态模型,如DALL-E和CM3(MS-COCO的12个FID和17个CIDEr改进),同时训练所需的计算量要少得多(<DALLE的30%)。此外,我们发现RA-CM3表现出了新的能力,如忠实的图像生成和多模态上下文学习(例如,从演示中生成图像)

1 引言

2 相关工作

3 方法

4 实验

5 定性结果

6 结论

我们提出了一种检索增强的多模态模型,该模型可以检索和引用用于生成图像和文本的外部存储器。具体来说,我们使用预训练的CLIP实现了一个多模态检索器,并使用CM3架构设计了一个检索增强生成器。我们得到的模型名为RA-CM3,在图像和字幕生成任务上都优于现有的多模态模型,同时需要更少的训练计算。此外,RA-CM3表现出新的能力,如知识密集型图像生成和多模态上下文学习。

这项工作旨在为多模态模型提供一个通用的模块化检索增强框架。我们相信这开辟了各种令人兴奋的研究途径,例如改进多模态检索器和生成器,将模态扩展到图像和文本之外,以及进一步研究多模态提示和上下文学习。

相关推荐
小鸡吃米…5 分钟前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫42 分钟前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)1 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan1 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维1 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS1 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd1 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟2 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然2 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
旅途中的宽~2 小时前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1