Retrieval-Augmented Multimodal Language Modeling

本文是LLM系列文章,针对《Retrieval-Augmented Multimodal Language Modeling》的翻译。

检索增强的多模态语言建模

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 方法](#3 方法)
  • [4 实验](#4 实验)
  • [5 定性结果](#5 定性结果)
  • [6 结论](#6 结论)

摘要

最近的多模态模型,如DALL-E和CM3,在文本到图像和图像到文本生成方面取得了显著进展。然而,这些模型将其所有知识(例如,埃菲尔铁塔的外观)存储在模型参数中,需要越来越大的模型和训练数据来获取更多的知识。为了以更具可扩展性和模块化的方式集成知识,我们提出了一种检索增强的多模态模型,该模型使基础多模态模型(生成器)能够引用检索器从外部存储器(例如,网络上的文档)中提取的相关文本和图像。具体来说,对于检索器,我们使用预训练的CLIP,对于生成器,我们在LAION数据集上训练CM3 Transformer。我们得到的模型名为Retrieval Augmented CM3(RA-CM3),是第一个可以检索和生成文本和图像的多模态模型。我们发现,RA-CM3在图像和字幕生成任务上显著优于基线多模态模型,如DALL-E和CM3(MS-COCO的12个FID和17个CIDEr改进),同时训练所需的计算量要少得多(<DALLE的30%)。此外,我们发现RA-CM3表现出了新的能力,如忠实的图像生成和多模态上下文学习(例如,从演示中生成图像)

1 引言

2 相关工作

3 方法

4 实验

5 定性结果

6 结论

我们提出了一种检索增强的多模态模型,该模型可以检索和引用用于生成图像和文本的外部存储器。具体来说,我们使用预训练的CLIP实现了一个多模态检索器,并使用CM3架构设计了一个检索增强生成器。我们得到的模型名为RA-CM3,在图像和字幕生成任务上都优于现有的多模态模型,同时需要更少的训练计算。此外,RA-CM3表现出新的能力,如知识密集型图像生成和多模态上下文学习。

这项工作旨在为多模态模型提供一个通用的模块化检索增强框架。我们相信这开辟了各种令人兴奋的研究途径,例如改进多模态检索器和生成器,将模态扩展到图像和文本之外,以及进一步研究多模态提示和上下文学习。

相关推荐
Echo``6 分钟前
1:OpenCV—图像基础
c++·图像处理·人工智能·opencv·算法·计算机视觉·视觉检测
FL171713148 分钟前
MATLAB机器人系统工具箱中的loadrobot和importrobot
人工智能·matlab·机器人
夏天是冰红茶25 分钟前
图像处理:预览并绘制图像细节
图像处理·人工智能·opencv
点云SLAM40 分钟前
Python中in和is关键字详解和使用
开发语言·人工智能·python·python学习·in和is关键字·python中for循环
后知后觉1 小时前
深度学习-最简单的Demo-直接运行
人工智能·深度学习
说私域1 小时前
基于开源链动2+1模式AI智能名片S2B2C商城小程序的低集中度市场运营策略研究
人工智能·小程序·开源·零售
COOCC11 小时前
激活函数全解析:定义、分类与 17 种常用函数详解
人工智能·深度学习·神经网络·算法·机器学习·计算机视觉·自然语言处理
武子康1 小时前
大语言模型 09 - 从0开始训练GPT 0.25B参数量 补充知识之数据集 Pretrain SFT RLHF
人工智能·gpt·ai·语言模型·自然语言处理
davysiao1 小时前
AG-UI 协议:重构多模态交互,开启智能应用新纪元
人工智能
沃洛德.辛肯1 小时前
PyTorch 的 F.scaled_dot_product_attention 返回Nan
人工智能·pytorch·python