Retrieval-Augmented Multimodal Language Modeling

本文是LLM系列文章,针对《Retrieval-Augmented Multimodal Language Modeling》的翻译。

检索增强的多模态语言建模

  • 摘要
  • [1 引言](#1 引言)
  • [2 相关工作](#2 相关工作)
  • [3 方法](#3 方法)
  • [4 实验](#4 实验)
  • [5 定性结果](#5 定性结果)
  • [6 结论](#6 结论)

摘要

最近的多模态模型,如DALL-E和CM3,在文本到图像和图像到文本生成方面取得了显著进展。然而,这些模型将其所有知识(例如,埃菲尔铁塔的外观)存储在模型参数中,需要越来越大的模型和训练数据来获取更多的知识。为了以更具可扩展性和模块化的方式集成知识,我们提出了一种检索增强的多模态模型,该模型使基础多模态模型(生成器)能够引用检索器从外部存储器(例如,网络上的文档)中提取的相关文本和图像。具体来说,对于检索器,我们使用预训练的CLIP,对于生成器,我们在LAION数据集上训练CM3 Transformer。我们得到的模型名为Retrieval Augmented CM3(RA-CM3),是第一个可以检索和生成文本和图像的多模态模型。我们发现,RA-CM3在图像和字幕生成任务上显著优于基线多模态模型,如DALL-E和CM3(MS-COCO的12个FID和17个CIDEr改进),同时训练所需的计算量要少得多(<DALLE的30%)。此外,我们发现RA-CM3表现出了新的能力,如忠实的图像生成和多模态上下文学习(例如,从演示中生成图像)

1 引言

2 相关工作

3 方法

4 实验

5 定性结果

6 结论

我们提出了一种检索增强的多模态模型,该模型可以检索和引用用于生成图像和文本的外部存储器。具体来说,我们使用预训练的CLIP实现了一个多模态检索器,并使用CM3架构设计了一个检索增强生成器。我们得到的模型名为RA-CM3,在图像和字幕生成任务上都优于现有的多模态模型,同时需要更少的训练计算。此外,RA-CM3表现出新的能力,如知识密集型图像生成和多模态上下文学习。

这项工作旨在为多模态模型提供一个通用的模块化检索增强框架。我们相信这开辟了各种令人兴奋的研究途径,例如改进多模态检索器和生成器,将模态扩展到图像和文本之外,以及进一步研究多模态提示和上下文学习。

相关推荐
喜欢吃豆4 分钟前
从指令到智能:大型语言模型提示词工程与上下文工程的综合分析
人工智能·语言模型·自然语言处理·大模型·提示词工程·上下文工程
Fuly10248 分钟前
prompt构建技巧
人工智能·prompt
XXX-X-XXJ12 分钟前
二:RAG 的 “语义密码”:向量、嵌入模型与 Milvus 向量数据库实操
人工智能·git·后端·python·django·milvus
艾醒(AiXing-w)19 分钟前
探索大语言模型(LLM):大模型微调方式全解析
人工智能·语言模型·自然语言处理
科兴第一吴彦祖23 分钟前
基于Spring Boot + Vue 3的乡村振兴综合服务平台
java·vue.js·人工智能·spring boot·推荐算法
姚瑞南30 分钟前
【AI 风向标】四种深度学习算法(CNN、RNN、GAN、RL)的通俗解释
人工智能·深度学习·算法
渡我白衣1 小时前
深度学习入门(一)——从神经元到损失函数,一步步理解前向传播(上)
人工智能·深度学习·学习
补三补四1 小时前
SMOTE 算法详解:解决不平衡数据问题的有效工具
人工智能·算法
为java加瓦1 小时前
前端学AI:如何写好提示词(prompt)
前端·人工智能·prompt
一车小面包1 小时前
对注意力机制的直观理解
人工智能·深度学习·机器学习