自然语言处理从入门到应用——LangChain:索引(Indexes)-[向量存储器(Vectorstores)]

分类目录:《自然语言处理从入门到应用》总目录


Vectorstores是构建索引的最重要组件之一。本文展示了与VectorStores相关的基本功能。在使用VectorStores时,创建要放入其中的向量是一个关键部分,通常通过嵌入来创建。

csharp 复制代码
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma

with open('../../state_of_the_union.txt') as f:
    state_of_the_union = f.read()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_text(state_of_the_union)

embeddings = OpenAIEmbeddings()
docsearch = Chroma.from_texts(texts, embeddings)

query = "What did the president say about Ketanji Brown Jackson"
docs = docsearch.similarity_search(query)

日志输出:

复制代码
Running Chroma using direct local API. Using DuckDB in-memory for database. Data will be transient.

输入:

复制代码
print(docs[0].page_content)

输出:

复制代码
In state after state, new laws have been passed, not only to suppress the vote, but to subvert entire elections. 

We cannot let this happen. 

Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you're at it, pass the Disclose Act so Americans can know who is funding our elections. 

Tonight, I'd like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer---an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. 

One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. 

And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation's top legal minds, who will continue Justice Breyer's legacy of excellence.

添加文本

我们可以使用add_texts方法轻松地将文本添加到VectorStore中。它将返回一个文档ID的列表(以防我们需要在下游使用它们)。

csharp 复制代码
docsearch.add_texts(["Ankush went to Princeton"])

输出:

复制代码
['a05e3d0c-ab40-11ed-a853-e65801318981']

输入:

复制代码
query = "Where did Ankush go to college?"
docs = docsearch.similarity_search(query)
docs[0]
Document(page_content='Ankush went to Princeton', lookup_str='', metadata={}, lookup_index=0)

从文档初始化

我们还可以直接从文档初始化一个Vectorstore。当我们在文本分割器上使用该方法直接获取文档时,这非常有用(当原始文档具有相关联的元数据时非常方便)。

复制代码
documents = text_splitter.create_documents([state_of_the_union], metadatas=[{"source": "State of the Union"}])
docsearch = Chroma.from_documents(documents, embeddings)

query = "What did the president say about Ketanji Brown Jackson"
docs = docsearch.similarity_search(query)

日志输出:

复制代码
Running Chroma using direct local API. Using DuckDB in-memory for database. Data will be transient.

输入:

复制代码
print(docs[0].page_content)

输出:

复制代码
In state after state, new laws have been passed, not only to suppress the vote, but to subvert entire elections. 

We cannot let this happen. 

Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Act. And while you're at it, pass the Disclose Act so Americans can know who is funding our elections. 

Tonight, I'd like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer---an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service. 

One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court. 

And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation's top legal minds, who will continue Justice Breyer's legacy of excellence.

参考文献:

1\] LangChain官方网站:https://www.langchain.com/ \[2\] LangChain 🦜️🔗 中文网,跟着LangChain一起学LLM/GPT开发:https://www.langchain.com.cn/ \[3\] LangChain中文网 - LangChain 是一个用于开发由语言模型驱动的应用程序的框架:http://www.cnlangchain.com/

相关推荐
华新嘉华DTC创新营销2 小时前
华新嘉华:AI搜索优化重塑本地生活行业:智能推荐正取代“关键词匹配”
人工智能·百度·生活
第七序章2 小时前
【C++STL】list的详细用法和底层实现
c语言·c++·自然语言处理·list
SmartBrain3 小时前
DeerFlow 实践:华为IPD流程的评审智能体设计
人工智能·语言模型·架构
l1t4 小时前
利用DeepSeek实现服务器客户端模式的DuckDB原型
服务器·c语言·数据库·人工智能·postgresql·协议·duckdb
寒月霜华5 小时前
机器学习-数据标注
人工智能·机器学习
九章云极AladdinEdu6 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
人工智能训练师7 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
cxr8288 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡8 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
幂简集成9 小时前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发