AI夏令营笔记——任务2

文章目录

任务说明

任务要求与任务1一样:

从论文标题、摘要作者等信息,判断该论文是否属于医学领域的文献。

可以将任务看作是一个文本二分类任务。机器需要根据对论文摘要等信息的理解,将论文划分为医学领域的文献和非医学领域的文献两个类别之一。

实现思路

使用预训练的大语言模型进行建模,在这里使用的是BERT。具体步骤如下:

  1. 数据预处理:首先,对文本数据进行预处理,包括文本清洗(如去除特殊字符、标点符号)、分词等操作。可以使用常见的NLP工具包(如NLTK或spaCy)来辅助进行预处理。
  2. 构建训练所需的dataset :构建Dataset类时,需要定义三个方法__init__,getitemlen,其中__init__方法完成类初始化,__getitem__要求返回返回内容和label,__len__方法返回数据长度
  3. 构造Dataloader:在其中完成对句子进行编码、填充、组装batch等动作:
  4. 定义预测模型利用预训练的BERT模型来解决文本二分类任务,我们将使用BERT模型编码中的[CLS]向量来完成二分类任务

CLS\]就是classification的意思,可以理解为用于下游的分类任务。

本任务的baseline如下:

python 复制代码
#import 相关库
#导入前置依赖
import os
import pandas as pd
import torch
from torch import nn
from torch.utils.data import Dataset, DataLoader
# 用于加载bert模型的分词器
from transformers import AutoTokenizer
# 用于加载bert模型
from transformers import BertModel
from pathlib import Path

batch_size = 8
# 文本的最大长度
text_max_length = 128
# 总训练的epochs数,我只是随便定义了个数
epochs = 100
# 学习率
lr = 3e-5
# 取多少训练集的数据作为验证集
validation_ratio = 0.1
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 每多少步,打印一次loss
log_per_step = 50

# 数据集所在位置
dataset_dir = Path("")
os.makedirs(dataset_dir) if not os.path.exists(dataset_dir) else ''

# 模型存储路径
model_dir = Path("./model/bert_checkpoints")
# 如果模型目录不存在,则创建一个
os.makedirs(model_dir) if not os.path.exists(model_dir) else ''

print("Device:", device)

# 读取数据集,进行数据处理

pd_train_data = pd.read_csv('train.csv')
pd_train_data['title'] = pd_train_data['title'].fillna('')
pd_train_data['abstract'] = pd_train_data['abstract'].fillna('')

test_data = pd.read_csv('testB.csv')
test_data['title'] = test_data['title'].fillna('')
test_data['abstract'] = test_data['abstract'].fillna('')
pd_train_data['text'] = pd_train_data['title'].fillna('') + ' ' +  pd_train_data['author'].fillna('') + ' ' + pd_train_data['abstract'].fillna('')+ ' ' + pd_train_data['Keywords'].fillna('')
test_data['text'] = test_data['title'].fillna('') + ' ' +  test_data['author'].fillna('') + ' ' + test_data['abstract'].fillna('')+ ' ' + pd_train_data['Keywords'].fillna('')
test_data['Keywords'] = test_data['title'].fillna('')

# 从训练集中随机采样测试集
validation_data = pd_train_data.sample(frac=validation_ratio)
train_data = pd_train_data[~pd_train_data.index.isin(validation_data.index)]

# 构建Dataset
class MyDataset(Dataset):

    def __init__(self, mode='train'):
        super(MyDataset, self).__init__()
        self.mode = mode
        # 拿到对应的数据
        if mode == 'train':
            self.dataset = train_data
        elif mode == 'validation':
            self.dataset = validation_data
        elif mode == 'test':
            # 如果是测试模式,则返回内容和uuid。拿uuid做target主要是方便后面写入结果。
            self.dataset = test_data
        else:
            raise Exception("Unknown mode {}".format(mode))

    def __getitem__(self, index):
        # 取第index条
        data = self.dataset.iloc[index]
        # 取其内容
        text = data['text']
        # 根据状态返回内容
        if self.mode == 'test':
            # 如果是test,将uuid做为target
            label = data['uuid']
        else:
            label = data['label']
        # 返回内容和label
        return text, label

    def __len__(self):
        return len(self.dataset)
train_dataset = MyDataset('train')
validation_dataset = MyDataset('validation')
train_dataset.__getitem__(0)

#获取Bert预训练模型
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
#接着构造我们的Dataloader。
#我们需要定义一下collate_fn,在其中完成对句子进行编码、填充、组装batch等动作:
def collate_fn(batch):
    """
    将一个batch的文本句子转成tensor,并组成batch。
    :param batch: 一个batch的句子,例如: [('推文', target), ('推文', target), ...]
    :return: 处理后的结果,例如:
             src: {'input_ids': tensor([[ 101, ..., 102, 0, 0, ...], ...]), 'attention_mask': tensor([[1, ..., 1, 0, ...], ...])}
             target:[1, 1, 0, ...]
    """
    text, label = zip(*batch)
    text, label = list(text), list(label)

    # src是要送给bert的,所以不需要特殊处理,直接用tokenizer的结果即可
    # padding='max_length' 不够长度的进行填充
    # truncation=True 长度过长的进行裁剪
    src = tokenizer(text, padding='max_length', max_length=text_max_length, return_tensors='pt', truncation=True)

    return src, torch.LongTensor(label)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn)
validation_loader = DataLoader(validation_dataset, batch_size=batch_size, shuffle=False, collate_fn=collate_fn)
inputs, targets = next(iter(train_loader))
print("inputs:", inputs)
print("targets:", targets)

#定义预测模型,该模型由bert模型加上最后的预测层组成
class MyModel(nn.Module):

    def __init__(self):
        super(MyModel, self).__init__()

        # 加载bert模型
        self.bert = BertModel.from_pretrained('bert-base-uncased', mirror='tuna')

        # 最后的预测层
        self.predictor = nn.Sequential(
            nn.Linear(768, 256),
            nn.ReLU(),
            nn.Linear(256, 1),
            nn.Sigmoid()
        )

    def forward(self, src):
        """
        :param src: 分词后的推文数据
        """

        # 将src直接序列解包传入bert,因为bert和tokenizer是一套的,所以可以这么做。
        # 得到encoder的输出,用最前面[CLS]的输出作为最终线性层的输入
        outputs = self.bert(**src).last_hidden_state[:, 0, :]

        # 使用线性层来做最终的预测
        return self.predictor(outputs)
model = MyModel()
model = model.to(device)

#定义出损失函数和优化器。这里使用Binary Cross Entropy:
criteria = nn.BCELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=lr)

# 由于inputs是字典类型的,定义一个辅助函数帮助to(device)
def to_device(dict_tensors):
    result_tensors = {}
    for key, value in dict_tensors.items():
        result_tensors[key] = value.to(device)
    return result_tensors

#定义一个验证方法,获取到验证集的精准率和loss
def validate():
    model.eval()
    total_loss = 0.
    total_correct = 0
    for inputs, targets in validation_loader:
        inputs, targets = to_device(inputs), targets.to(device)
        outputs = model(inputs)
        loss = criteria(outputs.view(-1), targets.float())
        total_loss += float(loss)

        correct_num = (((outputs >= 0.5).float() * 1).flatten() == targets).sum()
        total_correct += correct_num

    return total_correct / len(validation_dataset), total_loss / len(validation_dataset)

# 首先将模型调成训练模式
model.train()

# 清空一下cuda缓存
if torch.cuda.is_available():
    torch.cuda.empty_cache()

# 定义几个变量,帮助打印loss
total_loss = 0.
# 记录步数
step = 0

# 记录在验证集上最好的准确率
best_accuracy = 0

# 开始训练
for epoch in range(epochs):
    model.train()
    for i, (inputs, targets) in enumerate(train_loader):
        # 从batch中拿到训练数据
        inputs, targets = to_device(inputs), targets.to(device)
        # 传入模型进行前向传递
        outputs = model(inputs)
        # 计算损失
        loss = criteria(outputs.view(-1), targets.float())
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

        total_loss += float(loss)
        step += 1

        if step % log_per_step == 0:
            print("Epoch {}/{}, Step: {}/{}, total loss:{:.4f}".format(epoch+1, epochs, i, len(train_loader), total_loss))
            total_loss = 0

        del inputs, targets

    # 一个epoch后,使用过验证集进行验证
    accuracy, validation_loss = validate()
    print("Epoch {}, accuracy: {:.4f}, validation loss: {:.4f}".format(epoch+1, accuracy, validation_loss))
    torch.save(model, model_dir / f"model_{epoch}.pt")

    # 保存最好的模型
    if accuracy > best_accuracy:
        torch.save(model, model_dir / f"model_best.pt")
        best_accuracy = accuracy

#加载最好的模型,然后进行测试集的预测
model = torch.load(model_dir / f"model_best.pt")
model = model.eval()

test_dataset = MyDataset('test')
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, collate_fn=collate_fn)

results = []
for inputs, ids in test_loader:
    outputs = model(inputs.to(device))
    outputs = (outputs >= 0.5).int().flatten().tolist()
    ids = ids.tolist()
    results = results + [(id, result) for result, id in zip(outputs, ids)]
test_label = [pair[1] for pair in results]
test_data['label'] = test_label
test_data['Keywords'] = test_data['title'].fillna('')
test_data[['uuid', 'Keywords', 'label']].to_csv('submit_task4.csv', index=None)

优化方向

  1. 换模型:不同的模型的效果是不同的,可以多尝试不同的模型,然后再选择一个最优的。
  2. 调参优化:如果模型效果不理想,可以尝试调整超参数以获得更好的性能。
相关推荐
东风西巷8 小时前
Balabolka:免费高效的文字转语音软件
前端·人工智能·学习·语音识别·软件需求
非门由也8 小时前
《sklearn机器学习——管道和复合估计器》联合特征(FeatureUnion)
人工智能·机器学习·sklearn
l12345sy8 小时前
Day21_【机器学习—决策树(1)—信息增益、信息增益率、基尼系数】
人工智能·决策树·机器学习·信息增益·信息增益率·基尼指数
非门由也8 小时前
《sklearn机器学习——管道和复合估算器》异构数据的列转换器
人工智能·机器学习·sklearn
计算机毕业设计指导8 小时前
基于ResNet50的智能垃圾分类系统
人工智能·分类·数据挖掘
飞哥数智坊8 小时前
终端里用 Claude Code 太难受?我把它接进 TRAE,真香!
人工智能·claude·trae
小王爱学人工智能9 小时前
OpenCV的阈值处理
人工智能·opencv·计算机视觉
新智元9 小时前
刚刚,光刻机巨头 ASML 杀入 AI!豪掷 15 亿押注「欧版 OpenAI」,成最大股东
人工智能·openai
机器之心9 小时前
全球图生视频榜单第一,爱诗科技PixVerse V5如何改变一亿用户的视频创作
人工智能·openai
新智元9 小时前
2025年了,AI还看不懂时钟!90%人都能答对,顶尖AI全军覆没
人工智能·openai