Lnton羚通关于PyTorch的保存和加载模型基础知识

SAVE AND LOAD THE MODEL (保存和加载模型)

PyTorch 模型存储学习到的参数在内部状态字典中,称为 state_dict, 他们的持久化通过 torch.save 方法。

复制代码
model = models.shufflenet_v2_x0_5(pretrained=True)
torch.save(model, "../../data/ShuffleNetV2_X0.5.pth")

如果要加载模型的话,首先需要实例化一个同类型的模型对象,然后用 load_state_dict() 方法加载参数。

复制代码
model = models.shufflenet_v2_x0_5()
model.load_state_dict(torch.load("../../data/ShuffleNetV2_X0.5.pth"))
model.eval()

Output exceeds the size limit. Open the full output data in a text editor
ShuffleNetV2(
  (conv1): Sequential(
    (0): Conv2d(3, 24, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU(inplace=True)
  )
  (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  (stage2): Sequential(
    (0): InvertedResidual(
      (branch1): Sequential(
        (0): Conv2d(24, 24, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=24, bias=False)
        (1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): Conv2d(24, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (3): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (4): ReLU(inplace=True)
      )
      (branch2): Sequential(
        (0): Conv2d(24, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): ReLU(inplace=True)
        (3): Conv2d(24, 24, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=24, bias=False)
        (4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (5): Conv2d(24, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (6): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (7): ReLU(inplace=True)
...
    (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU(inplace=True)
  )
  (fc): Linear(in_features=1024, out_features=1000, bias=True)
)

Saving and Loading Models with Shapes

当加载模型权重时,我们需要首先实例化模型类,因为类定义了网络的结构。我们可能想要保存类的结构以及模型,在这种情况下,我们可以将 model (而不是 model.state_dict() ) 传递给保存函数:

复制代码
torch.save(model, "../../data/ShuffleNetV2_X0.5_eval2.pth")

加载模型如这样:

复制代码
model = torch.load("../../data/ShuffleNetV2_X0.5_eval2.pth")
print(model)

这种方法在序列化模型时使用 Python pickle 模块,因此它依赖于加载模型时可用的实际类定义。

Lnton羚通专注于音视频算法、算力、云平台的高科技人工智能企业。 公司基于视频分析技术、视频智能传输技术、远程监测技术以及智能语音融合技术等, 拥有多款可支持ONVIF、RTSP、GB/T28181等多协议、多路数的音视频智能分析服务器/云平台。

相关推荐
qq_416276422 小时前
LOFAR物理频谱特征提取及实现
人工智能
Python图像识别3 小时前
71_基于深度学习的布料瑕疵检测识别系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
python·深度学习·yolo
余俊晖3 小时前
如何构造一个文档解析的多模态大模型?MinerU2.5架构、数据、训练方法
人工智能·文档解析
千码君20164 小时前
React Native:从react的解构看编程众多语言中的解构
java·javascript·python·react native·react.js·解包·解构
淮北4944 小时前
windows安装minicoda
windows·python·conda
Akamai中国4 小时前
Linebreak赋能实时化企业转型:专业系统集成商携手Akamai以实时智能革新企业运营
人工智能·云计算·云服务
LiJieNiub5 小时前
读懂目标检测:从基础概念到主流算法
人工智能·计算机视觉·目标跟踪
weixin_519535776 小时前
从ChatGPT到新质生产力:一份数据驱动的AI研究方向指南
人工智能·深度学习·机器学习·ai·chatgpt·数据分析·aigc
爱喝白开水a6 小时前
LangChain 基础系列之 Prompt 工程详解:从设计原理到实战模板_langchain prompt
开发语言·数据库·人工智能·python·langchain·prompt·知识图谱
takashi_void6 小时前
如何在本地部署大语言模型(Windows,Mac,Linux)三系统教程
linux·人工智能·windows·macos·语言模型·nlp