nlp系列(7)三元组识别(Bi-LSTM+CRF)pytorch

模型介绍

在实体识别中:使用了Bert模型,CRF模型

在关系识别中:使用了Bert模型的输出与实体掩码,进行一系列变化,得到关系

Bert模型介绍可以查看这篇文章:nlp系列(2)文本分类(Bert)pytorch_bert文本分类_牧子川的博客-CSDN博客

CRF模型介绍可以查看这篇文章:

nlp系列(6)文本实体识别(Bi-LSTM+CRF)pytorch_牧子川的博客-CSDN博客

模型结构

画了一个简易图

数据介绍

数据网址:https://github.com/buppt//raw/master/data/people-relation/train.txthttps://github.com/buppt//raw/master/data/people-relation/train.txt

实体1 实体2 关系 文本

模型准备

将处理的数据通过bert模型计算得到两个实体的权重,然后送入到CRF模型计算两个实体损失,然后借鉴Bert模型的掩码,将bert的输出与实体掩码及其计算,得到关系的损失,将两个损失相加,得到模型的总损失。

python 复制代码
    def compute_loss(self, input_ids, attention_mask, tag_ids, sub_mask, obj_mask, labels, real_lengths):
        hidden_output, pooled_output = self.get_features(input_ids, attention_mask)
        feats = self.hidden2tag(hidden_output)
        total_scores = self.get_total_scores(feats, real_lengths)
        gold_score = self.get_golden_scores(feats, tag_ids, real_lengths)
        ner_loss = torch.mean(total_scores - gold_score)
        relation_logits = self.get_relation_logit(pooled_output, hidden_output, sub_mask, obj_mask)
        relation_loss = self.criterion(relation_logits, labels)
        return ner_loss + relation_loss

模型预测

复制代码
文本:
除演艺事业外,李冰冰热心公益,发起并亲自参与多项环保慈善活动,积极投身其中,身体力行担起了回馈社会的责任于02年出演《少年包青天》,进入大家视线
预测结果:
少年包青天 - 主演 - 李冰冰
=========================================
文本:
马志舟,1907年出生,陕西三原人,汉族,中国共产党,任红四团第一连连长,1933年逝世
预测结果:
马志舟 - 国籍 - 中国
马志舟 - 出生日期 - 1907年
马志舟 - 民族 - 汉族
马志舟 - 出生地 - 陕西三原 

源码获取

Bert+CRF 三元组识别https://github.com/mzc421/Pytorch-NLP/tree/master/11-Bert%2BCRF%20%E4%B8%89%E5%85%83%E7%BB%84%E8%AF%86%E5%88%AB硬性的标准其实限制不了无限可能的我们,所以啊!少年们加油吧!

相关推荐
机器学习之心2 小时前
分解+优化+预测!CEEMDAN-Kmeans-VMD-DOA-Transformer-LSTM多元时序预测
lstm·transformer·kmeans·多元时序预测·双分解
会写代码的饭桶2 小时前
通俗理解 LSTM 的三门机制:从剧情记忆到科学原理
人工智能·rnn·lstm·transformer
知来者逆4 小时前
视觉语言模型应用开发——Qwen 2.5 VL模型视频理解与定位能力深度解析及实践指南
人工智能·语言模型·自然语言处理·音视频·视觉语言模型·qwen 2.5 vl
金井PRATHAMA8 小时前
超越模仿,探寻智能的本源:从人类认知机制到下一代自然语言处理
人工智能·自然语言处理·知识图谱
算法打盹中9 小时前
基于树莓派与Jetson Nano集群的实验边缘设备上视觉语言模型(VLMs)的性能评估与实践探索
人工智能·计算机视觉·语言模型·自然语言处理·树莓派·多模态·jetson nano
HuggingFace10 小时前
ZeroGPU Spaces 加速实践:PyTorch 提前编译全解析
pytorch·zerogpu
跳跳糖炒酸奶10 小时前
第六章、从transformer到nlp大模型:编码器-解码器模型 (Encoder-Decoder)
深度学习·自然语言处理·transformer
小杨勇敢飞14 小时前
UNBIASED WATERMARK:大语言模型的无偏差水印
人工智能·语言模型·自然语言处理
Luchang-Li14 小时前
sglang pytorch NCCL hang分析
pytorch·python·nccl
m0_6038887114 小时前
Delta Activations A Representation for Finetuned Large Language Models
人工智能·ai·语言模型·自然语言处理·论文速览