【机器学习】python基础实现线性回归

手写梯度下降的实现y=kx+b的线性回归

算法步骤:

(1)构造数据,y=3*x+5;

(2)随机初始化,任意数值,例如=9,=10;

(3)计算,并计算

(4)分别对求导数,

其中

重复循环n次后停止

构造线性函数:

代码实现:

python 复制代码
X=[i for i in range(0,15)]

k=3
b=5
Y=[k*i+b for i in X]

import matplotlib.pyplot as plt
fig, ax = plt.subplots()

# 在同一个图形中绘制散点图和折线图
ax.scatter(X, Y, color='blue', label='scatter')
ax.plot(X, Y, color='red', label='line')

# 添加图例
ax.legend()

# 显示图形
plt.show()

MSE损失函数:

python 复制代码
loss.append((Y[i]-y_[i])**2)  #公式对应代码

分别对k和b求导结果如图所示:

python 复制代码
#公式对应代码
delta_K_sum.append((Y[i]-y_[i])*(-2)*X[i])
delta_B_sum.append((Y[i]-y_[i])*(-2))

全部代码:

python 复制代码
X=[i for i in range(0,15)]
X
k=3
b=5
Y=[k*i+b for i in X]
Y
import matplotlib.pyplot as plt
# 创建散点图
plt.scatter(X, Y)

# 显示图形
plt.show()
#随机初始化要求的k和b
K=8
B=10
#k和b是正确答案,根据数据和随机初始化的K和B去拟合函数,找到最优的k和b
#y=Kx+B
loss=[]

#计算预测值
for i in range(1000):
    y_=[K*i+B for i in X]

    loss=[]
    for i in range(len(X)):
        loss.append((Y[i]-y_[i])**2)
    print(sum(loss)/len(loss))
    # cha=loss.sum()/len(loss)
    #计算loss

    #根据最小二乘法  对y_求导,等我用纸写一下,利用loss对K求梯度,去更新K的值,对B求梯度,求更新B的值
    #直到K和B基本拟合图像
    delta_K_sum=[]
    delta_B_sum=[]
    for i in range(len(X)):
        delta_K_sum.append((Y[i]-y_[i])*(-2)*X[i])
        delta_B_sum.append((Y[i]-y_[i])*(-2))
    delta_K=sum(delta_K_sum)/len(delta_K_sum)

    delta_B=sum(delta_B_sum)/len(delta_B_sum)
    #0.01是学习率,保证稳定收敛
    K=K-0.01*delta_K
    B=B-0.01*delta_B
    print(K,B)
print(K,B)

结果图像:

python 复制代码
X=[i for i in range(0,15)]

Y=[K*i+B for i in X]

import matplotlib.pyplot as plt
fig, ax = plt.subplots()

# 在同一个图形中绘制散点图和折线图
ax.scatter(X, Y, color='blue', label='scatter')
ax.plot(X, Y, color='red', label='line')

# 添加图例
ax.legend()

# 显示图形
plt.show()
相关推荐
nvd1124 分钟前
python异步编程 -协程的实际意义
开发语言·python
_安晓25 分钟前
Rust 中精确大小迭代器(ExactSizeIterator)的深度解析与实践
java·前端·python
ayaya_mana28 分钟前
CentOS 7/8/9 一键安装 Python 3.10+ 并配置默认版本
linux·python·centos
格兰芬多呼神护卫42 分钟前
python实现Latex格式的公式转OMML并写入word
python·c#·word
ZPC82102 小时前
opencv 获取图像中物体的坐标值
人工智能·python·算法·机器人
测试19982 小时前
如何写出一个完整的测试用例?
自动化测试·软件测试·python·测试工具·职场和发展·测试用例·接口测试
微笑尅乐2 小时前
三种方法解开——力扣3370.仅含置位位的最小整数
python·算法·leetcode
多恩Stone3 小时前
【3DV 进阶-5】3D生成中 Inductive Bias (归纳偏置)的技术路线图
人工智能·python·算法·3d·aigc
闲人编程3 小时前
使用Python进行量化交易入门
开发语言·python·统计分析·lambda·量化·codecapsule