【机器学习】python基础实现线性回归

手写梯度下降的实现y=kx+b的线性回归

算法步骤:

(1)构造数据,y=3*x+5;

(2)随机初始化,任意数值,例如=9,=10;

(3)计算,并计算

(4)分别对求导数,

其中

重复循环n次后停止

构造线性函数:

代码实现:

python 复制代码
X=[i for i in range(0,15)]

k=3
b=5
Y=[k*i+b for i in X]

import matplotlib.pyplot as plt
fig, ax = plt.subplots()

# 在同一个图形中绘制散点图和折线图
ax.scatter(X, Y, color='blue', label='scatter')
ax.plot(X, Y, color='red', label='line')

# 添加图例
ax.legend()

# 显示图形
plt.show()

MSE损失函数:

python 复制代码
loss.append((Y[i]-y_[i])**2)  #公式对应代码

分别对k和b求导结果如图所示:

python 复制代码
#公式对应代码
delta_K_sum.append((Y[i]-y_[i])*(-2)*X[i])
delta_B_sum.append((Y[i]-y_[i])*(-2))

全部代码:

python 复制代码
X=[i for i in range(0,15)]
X
k=3
b=5
Y=[k*i+b for i in X]
Y
import matplotlib.pyplot as plt
# 创建散点图
plt.scatter(X, Y)

# 显示图形
plt.show()
#随机初始化要求的k和b
K=8
B=10
#k和b是正确答案,根据数据和随机初始化的K和B去拟合函数,找到最优的k和b
#y=Kx+B
loss=[]

#计算预测值
for i in range(1000):
    y_=[K*i+B for i in X]

    loss=[]
    for i in range(len(X)):
        loss.append((Y[i]-y_[i])**2)
    print(sum(loss)/len(loss))
    # cha=loss.sum()/len(loss)
    #计算loss

    #根据最小二乘法  对y_求导,等我用纸写一下,利用loss对K求梯度,去更新K的值,对B求梯度,求更新B的值
    #直到K和B基本拟合图像
    delta_K_sum=[]
    delta_B_sum=[]
    for i in range(len(X)):
        delta_K_sum.append((Y[i]-y_[i])*(-2)*X[i])
        delta_B_sum.append((Y[i]-y_[i])*(-2))
    delta_K=sum(delta_K_sum)/len(delta_K_sum)

    delta_B=sum(delta_B_sum)/len(delta_B_sum)
    #0.01是学习率,保证稳定收敛
    K=K-0.01*delta_K
    B=B-0.01*delta_B
    print(K,B)
print(K,B)

结果图像:

python 复制代码
X=[i for i in range(0,15)]

Y=[K*i+B for i in X]

import matplotlib.pyplot as plt
fig, ax = plt.subplots()

# 在同一个图形中绘制散点图和折线图
ax.scatter(X, Y, color='blue', label='scatter')
ax.plot(X, Y, color='red', label='line')

# 添加图例
ax.legend()

# 显示图形
plt.show()
相关推荐
沉到海底去吧Go16 分钟前
【PDF识别改名】PDF指定区域OCR识别重命名工具使用教程和注意事项
python·pdf·ocr
面朝大海,春不暖,花不开20 分钟前
管理数据洪流:自动化处理与归档每日数据文件的策略与实践
运维·python·自动化
YYXZZ。。1 小时前
PyTorch——搭建小实战和Sequential的使用(7)
人工智能·pytorch·python
四川兔兔1 小时前
pytorch 与 张量的处理
人工智能·pytorch·python
AI蜗牛之家5 小时前
Qwen系列之Qwen3解读:最强开源模型的细节拆解
人工智能·python
殇者知忧5 小时前
【论文笔记】若干矿井粉尘检测算法概述
深度学习·神经网络·算法·随机森林·机器学习·支持向量机·计算机视觉
whyeekkk5 小时前
python打卡第48天
开发语言·python
YunTM5 小时前
贝叶斯优化+LSTM+时序预测=Nature子刊!
人工智能·机器学习
Eiceblue8 小时前
Python读取PDF:文本、图片与文档属性
数据库·python·pdf
weixin_527550408 小时前
初级程序员入门指南
javascript·python·算法