神经网络基础-神经网络补充概念-45-指数加权平均

概念

指数加权平均(Exponential Moving Average,EMA)是一种平均方法,用于平滑时间序列数据或者计算变量的滚动均值。它对数据的权重分布呈指数递减,越靠近当前时刻的数据权重越高,越远离当前时刻的数据权重越低。EMA在信号处理、金融分析和深度学习等领域中有广泛应用,可以用于去噪、趋势分析以及模型参数更新等场景。

公式

EMA的计算公式如下:

python 复制代码
EMA(t) = α * x(t) + (1 - α) * EMA(t-1)

其中,t 表示当前时刻,x(t) 表示当前时刻的数据点,α 是平滑因子(也称为衰减因子),通常取值范围在0到1之间。EMA(t-1) 表示上一时刻的指数加权平均。

在每一步迭代中,都会计算新的EMA值,这样可以在数据流动过程中对数据进行平滑处理。

代码实现

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

# 生成随机数据
np.random.seed(0)
data = np.random.randn(100)

# 指数加权平均的平滑因子
alpha = 0.2

# 计算指数加权平均
ema = np.zeros_like(data)
ema[0] = data[0]
for t in range(1, len(data)):
    ema[t] = alpha * data[t] + (1 - alpha) * ema[t-1]

# 绘制原始数据和指数加权平均
plt.plot(data, label='Original Data')
plt.plot(ema, label=f'EMA (alpha={alpha})', color='red')
plt.legend()
plt.xlabel('Time')
plt.ylabel('Value')
plt.title('Exponential Moving Average')
plt.show()
相关推荐
GEO AI搜索优化助手22 分钟前
AI搜索革命:营销新纪元,GEO时代生成式AI重构搜索
人工智能·搜索引擎·生成式引擎优化·ai优化·geo搜索优化
丝瓜蛋汤1 小时前
NCE(noise contrastive estimation)loss噪声对比估计损失和InfoNCE loss
人工智能
DeepVis Research1 小时前
【AGI Safety/Robotics】2026年度 AGI 对抗性强化学习与软体机器人控制基准索引 (Skynet/Legion Core)
人工智能·网络安全·机器人·数据集·强化学习
Tipriest_8 小时前
torch训练出的模型的组成以及模型训练后的使用和分析办法
人工智能·深度学习·torch·utils
QuiteCoder8 小时前
深度学习的范式演进、架构前沿与通用人工智能之路
人工智能·深度学习
周名彥8 小时前
### 天脑体系V∞·13824D完全体终极架构与全域落地研究报告 (生物计算与隐私计算融合版)
人工智能·神经网络·去中心化·量子计算·agi
MoonBit月兔8 小时前
年终 Meetup:走进腾讯|AI 原生编程与 Code Agent 实战交流会
大数据·开发语言·人工智能·腾讯云·moonbit
大模型任我行9 小时前
人大:熵引导的LLM有限数据训练
人工智能·语言模型·自然语言处理·论文笔记
weixin_468466859 小时前
YOLOv13结合代码原理详细解析及模型安装与使用
人工智能·深度学习·yolo·计算机视觉·图像识别·目标识别·yolov13
蹦蹦跳跳真可爱5899 小时前
Python----大模型(GPT-2模型训练加速,训练策略)
人工智能·pytorch·python·gpt·embedding