神经网络基础-神经网络补充概念-45-指数加权平均

概念

指数加权平均(Exponential Moving Average,EMA)是一种平均方法,用于平滑时间序列数据或者计算变量的滚动均值。它对数据的权重分布呈指数递减,越靠近当前时刻的数据权重越高,越远离当前时刻的数据权重越低。EMA在信号处理、金融分析和深度学习等领域中有广泛应用,可以用于去噪、趋势分析以及模型参数更新等场景。

公式

EMA的计算公式如下:

python 复制代码
EMA(t) = α * x(t) + (1 - α) * EMA(t-1)

其中,t 表示当前时刻,x(t) 表示当前时刻的数据点,α 是平滑因子(也称为衰减因子),通常取值范围在0到1之间。EMA(t-1) 表示上一时刻的指数加权平均。

在每一步迭代中,都会计算新的EMA值,这样可以在数据流动过程中对数据进行平滑处理。

代码实现

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

# 生成随机数据
np.random.seed(0)
data = np.random.randn(100)

# 指数加权平均的平滑因子
alpha = 0.2

# 计算指数加权平均
ema = np.zeros_like(data)
ema[0] = data[0]
for t in range(1, len(data)):
    ema[t] = alpha * data[t] + (1 - alpha) * ema[t-1]

# 绘制原始数据和指数加权平均
plt.plot(data, label='Original Data')
plt.plot(ema, label=f'EMA (alpha={alpha})', color='red')
plt.legend()
plt.xlabel('Time')
plt.ylabel('Value')
plt.title('Exponential Moving Average')
plt.show()
相关推荐
真上帝的左手几秒前
26. AI-框架工具-LangChain & LangGraph
人工智能·langchain
沛沛老爹2 分钟前
Web开发者进阶AI:Agent Skills-深度迭代处理架构——从递归函数到智能决策引擎
java·开发语言·人工智能·科技·架构·企业开发·发展趋势
赫尔·普莱蒂科萨·帕塔4 分钟前
医疗新纪元的开启
人工智能·chatgpt
m0_603888717 分钟前
Scaling Trends for Multi-Hop Contextual Reasoning in Mid-Scale Language Models
人工智能·算法·ai·语言模型·论文速览
飞凌嵌入式8 分钟前
解析一下面向教育领域的RV1126B\RK3506B\RK3576开发板
linux·人工智能
congming202010 分钟前
AI赋能软考高项论文:140天分层突破法(适配新大纲绩效域)
人工智能
萤丰信息13 分钟前
开启园区“生命体”时代——智慧园区系统,定义未来的办公与生活
java·大数据·运维·数据库·人工智能·生活·智慧园区
Toky丶14 分钟前
【文献阅读】Pretraining Large Language Models with NVFP4
人工智能·语言模型·自然语言处理
颜值博主14 分钟前
新一代大模型范式: Inner Tools
人工智能·ai·语言模型
IT_陈寒15 分钟前
Python 3.12 新特性实战:这5个改进让我的开发效率提升40%
前端·人工智能·后端