神经网络基础-神经网络补充概念-45-指数加权平均

概念

指数加权平均(Exponential Moving Average,EMA)是一种平均方法,用于平滑时间序列数据或者计算变量的滚动均值。它对数据的权重分布呈指数递减,越靠近当前时刻的数据权重越高,越远离当前时刻的数据权重越低。EMA在信号处理、金融分析和深度学习等领域中有广泛应用,可以用于去噪、趋势分析以及模型参数更新等场景。

公式

EMA的计算公式如下:

python 复制代码
EMA(t) = α * x(t) + (1 - α) * EMA(t-1)

其中,t 表示当前时刻,x(t) 表示当前时刻的数据点,α 是平滑因子(也称为衰减因子),通常取值范围在0到1之间。EMA(t-1) 表示上一时刻的指数加权平均。

在每一步迭代中,都会计算新的EMA值,这样可以在数据流动过程中对数据进行平滑处理。

代码实现

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

# 生成随机数据
np.random.seed(0)
data = np.random.randn(100)

# 指数加权平均的平滑因子
alpha = 0.2

# 计算指数加权平均
ema = np.zeros_like(data)
ema[0] = data[0]
for t in range(1, len(data)):
    ema[t] = alpha * data[t] + (1 - alpha) * ema[t-1]

# 绘制原始数据和指数加权平均
plt.plot(data, label='Original Data')
plt.plot(ema, label=f'EMA (alpha={alpha})', color='red')
plt.legend()
plt.xlabel('Time')
plt.ylabel('Value')
plt.title('Exponential Moving Average')
plt.show()
相关推荐
kkai人工智能5 分钟前
AI写作:从“废话”到“爆款”
开发语言·人工智能·ai·ai写作
づ安眠丶乐灬5 小时前
计算机视觉中的多视图几何 - 1
人工智能·vscode·计算机视觉
2503_928411565 小时前
项目中的一些问题(补充)
人工智能·python·tensorflow
MarkHD5 小时前
智能体在车联网中的应用 第1天 车联网完全导论:从核心定义到架构全景,构建你的知识坐标系
人工智能·架构
中科米堆5 小时前
塑料制品企业部署自动化三维扫描仪设备,解决注塑件变形问题-中科米堆CASAIM
人工智能
星图云5 小时前
从数据累积到精准解析:AI解译打造遥感数据高效利用新范式
人工智能·卫星遥感
飞哥数智坊5 小时前
AI 大厂的“护城河”,也会成为它们的束缚
人工智能·创业
BB_CC_DD6 小时前
超简单搭建AI去水印和图像修复算法lama-cleaner二
人工智能·深度学习
珠海西格电力6 小时前
零碳园区物流园区架构协同方案
人工智能·物联网·架构·能源