神经网络基础-神经网络补充概念-45-指数加权平均

概念

指数加权平均(Exponential Moving Average,EMA)是一种平均方法,用于平滑时间序列数据或者计算变量的滚动均值。它对数据的权重分布呈指数递减,越靠近当前时刻的数据权重越高,越远离当前时刻的数据权重越低。EMA在信号处理、金融分析和深度学习等领域中有广泛应用,可以用于去噪、趋势分析以及模型参数更新等场景。

公式

EMA的计算公式如下:

python 复制代码
EMA(t) = α * x(t) + (1 - α) * EMA(t-1)

其中,t 表示当前时刻,x(t) 表示当前时刻的数据点,α 是平滑因子(也称为衰减因子),通常取值范围在0到1之间。EMA(t-1) 表示上一时刻的指数加权平均。

在每一步迭代中,都会计算新的EMA值,这样可以在数据流动过程中对数据进行平滑处理。

代码实现

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

# 生成随机数据
np.random.seed(0)
data = np.random.randn(100)

# 指数加权平均的平滑因子
alpha = 0.2

# 计算指数加权平均
ema = np.zeros_like(data)
ema[0] = data[0]
for t in range(1, len(data)):
    ema[t] = alpha * data[t] + (1 - alpha) * ema[t-1]

# 绘制原始数据和指数加权平均
plt.plot(data, label='Original Data')
plt.plot(ema, label=f'EMA (alpha={alpha})', color='red')
plt.legend()
plt.xlabel('Time')
plt.ylabel('Value')
plt.title('Exponential Moving Average')
plt.show()
相关推荐
普if加的帕22 分钟前
java Springboot使用扣子Coze实现实时音频对话智能客服
java·开发语言·人工智能·spring boot·实时音视频·智能客服
KoiC31 分钟前
Dify接入RAGFlow无返回结果
人工智能·ai应用
lilye6642 分钟前
精益数据分析(20/126):解析经典数据分析框架,助力创业增长
大数据·人工智能·数据分析
盈达科技1 小时前
盈达科技:登顶GEO优化全球制高点,以AICC定义AI时代内容智能优化新标杆
大数据·人工智能
安冬的码畜日常1 小时前
【AI 加持下的 Python 编程实战 2_10】DIY 拓展:从扫雷小游戏开发再探问题分解与 AI 代码调试能力(中)
开发语言·前端·人工智能·ai·扫雷游戏·ai辅助编程·辅助编程
古希腊掌管学习的神1 小时前
[LangGraph教程]LangGraph04——支持人机协作的聊天机器人
人工智能·语言模型·chatgpt·机器人·agent
FIT2CLOUD飞致云1 小时前
问答页面支持拖拽和复制粘贴文件,MaxKB企业级AI助手v1.10.6 LTS版本发布
人工智能·开源
起个破名想半天了1 小时前
计算机视觉cv入门之答题卡自动批阅
人工智能·opencv·计算机视觉
早睡早起吧1 小时前
目标检测篇---Fast R-CNN
人工智能·目标检测·计算机视觉·cnn
爱喝奶茶的企鹅2 小时前
Ethan独立开发产品日报 | 2025-04-24
人工智能·程序员·开源