神经网络基础-神经网络补充概念-45-指数加权平均

概念

指数加权平均(Exponential Moving Average,EMA)是一种平均方法,用于平滑时间序列数据或者计算变量的滚动均值。它对数据的权重分布呈指数递减,越靠近当前时刻的数据权重越高,越远离当前时刻的数据权重越低。EMA在信号处理、金融分析和深度学习等领域中有广泛应用,可以用于去噪、趋势分析以及模型参数更新等场景。

公式

EMA的计算公式如下:

python 复制代码
EMA(t) = α * x(t) + (1 - α) * EMA(t-1)

其中,t 表示当前时刻,x(t) 表示当前时刻的数据点,α 是平滑因子(也称为衰减因子),通常取值范围在0到1之间。EMA(t-1) 表示上一时刻的指数加权平均。

在每一步迭代中,都会计算新的EMA值,这样可以在数据流动过程中对数据进行平滑处理。

代码实现

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

# 生成随机数据
np.random.seed(0)
data = np.random.randn(100)

# 指数加权平均的平滑因子
alpha = 0.2

# 计算指数加权平均
ema = np.zeros_like(data)
ema[0] = data[0]
for t in range(1, len(data)):
    ema[t] = alpha * data[t] + (1 - alpha) * ema[t-1]

# 绘制原始数据和指数加权平均
plt.plot(data, label='Original Data')
plt.plot(ema, label=f'EMA (alpha={alpha})', color='red')
plt.legend()
plt.xlabel('Time')
plt.ylabel('Value')
plt.title('Exponential Moving Average')
plt.show()
相关推荐
whaosoft-14330 分钟前
51c自动驾驶~合集7
人工智能
刘晓倩4 小时前
Coze智能体开发实战-多Agent综合实战
人工智能·coze
石迹耿千秋4 小时前
迁移学习--基于torchvision中VGG16模型的实战
人工智能·pytorch·机器学习·迁移学习
路人蛃8 小时前
通过国内扣子(Coze)搭建智能体并接入discord机器人
人工智能·python·ubuntu·ai·aigc·个人开发
CV-杨帆8 小时前
论文阅读:arxiv 2025 A Survey of Large Language Model Agents for Question Answering
论文阅读·人工智能·语言模型
绝顶大聪明8 小时前
【深度学习】神经网络-part2
人工智能·深度学习·神经网络
加百力8 小时前
AI助手竞争白热化,微软Copilot面临ChatGPT的9亿下载挑战
人工智能·microsoft·copilot
Danceful_YJ9 小时前
16.使用ResNet网络进行Fashion-Mnist分类
人工智能·深度学习·神经网络·resnet
香蕉可乐荷包蛋9 小时前
AI算法之图像识别与分类
人工智能·学习·算法
张较瘦_10 小时前
[论文阅读] 人工智能 + 软件工程 | 当LLMs遇上顺序API调用:StateGen与StateEval如何破解测试难题?
论文阅读·人工智能