损失函数介绍

用softmax,就可以将一个输出值转换到概率取值的一个范围。

交叉熵损失CrossEntropyLoss

第一个参数weight, 各类别的loss设置权值, 如果类别不均衡的时候这个参数很有必要了,加了之后损失函数变成这样:

第二个参数ignore_index, 这个是表示某个类别不去计算loss。

第三个参数reduction, 计算模式,可为none/sum/mean, none表示逐个元素计算,这样有多少个样本就会返回多少个loss。 sum表示所有元素的loss求和,返回标量, mean所有元素的loss求加权平均(加权平均的含义下面会提到),返回标量。

python 复制代码
# fake data
inputs = torch.tensor([[1, 2], [1, 3], [1, 3]], dtype=torch.float)  # 这里就是模型预测的输出, 这里是两个类,可以看到模型输出是数值,我们得softmax一下转成分布
target = torch.tensor([0, 1, 1], dtype=torch.long)  # 这里的类型必须是long, 两个类0和1

# 三种模式的损失函数
loss_f_none = nn.CrossEntropyLoss(weight=None, reduction='none')
loss_f_sum = nn.CrossEntropyLoss(weight=None, reduction='sum')
loss_f_mean = nn.CrossEntropyLoss(weight=None, reduction='mean')

# forward
loss_none = loss_f_none(inputs, target)
loss_sum = loss_f_sum(inputs, target)
loss_mean = loss_f_mean(inputs, target)

# view
print("Cross Entropy Loss:\n ", loss_none, loss_sum, loss_mean)

## 结果:
Cross Entropy Loss:
  tensor([1.3133, 0.1269, 0.1269]) tensor(1.5671) tensor(0.5224)

这里还要注意一下这里的target, 这个是每个样本给出属于哪一个类即可,类型是torch.long, 为什么要强调这个,我们下面会学习二分类交叉熵损失,是交叉熵损失函数的特例,那里的target更要注意,对比起来更容易理解

nn.BCELoss

这个是交叉熵损失函数的特例,二分类交叉熵。注意:输入值取值在[0,1]

nn.MSE

这个也是用于回归问题,计算inputs与target之差的平方

损失函数介绍

相关推荐
Francek Chen13 小时前
【深度学习计算机视觉】12:风格迁移
人工智能·pytorch·深度学习·计算机视觉·风格迁移
A-大程序员13 小时前
【Pytorch】分类问题交叉熵
人工智能·pytorch·分类
董建光d13 小时前
PyTorch 实现多种 CNN 模型并采用集成方法提升 CIFAR-10 分类性能
人工智能·pytorch·cnn
JJJJ_iii16 小时前
【机器学习03】学习率与特征工程、多项式回归、逻辑回归
人工智能·pytorch·笔记·学习·机器学习·回归·逻辑回归
LiJieNiub1 天前
基于 PyTorch 实现 MNIST 手写数字识别
pytorch·深度学习·学习
chxin140161 天前
Transformer注意力机制——动手学深度学习10
pytorch·rnn·深度学习·transformer
MYX_3091 天前
第五章 神经网络的优化
pytorch·深度学习·神经网络·学习
久未2 天前
Pytorch autoload机制自动加载树外扩展(Autoload Device Extension)
人工智能·pytorch·python
西柚小萌新2 天前
【深入浅出PyTorch】--7.1.PyTorch可视化1
人工智能·pytorch·python
一车小面包2 天前
Transformers中从 logits 本质到问答系统中的字符定位机制
pytorch·python·深度学习