Seaborn数据可视化(四)

目录

1.绘制箱线图

2.绘制小提琴图

3.绘制多面板图

4.绘制等高线图

5.绘制热力图


1.绘制箱线图

python 复制代码
import seaborn as sns
import matplotlib.pyplot as plt
# 加载示例数据(例如,使用seaborn自带的数据集)
tips = sns.load_dataset("tips")

# 使用boxplot绘制箱线图
sns.boxplot(x='day', y='total_bill', data=tips)

# 展示图形
plt.show()

结果图:

2.绘制小提琴图

python 复制代码
import seaborn as sns
import matplotlib.pyplot as plt

# 加载iris数据集
iris = sns.load_dataset('iris')

# 使用violinplot绘制小提琴图
sns.violinplot(x='species', y='sepal_length', data=iris)

# 设置图形标题
plt.title('Violin Plot of Sepal Length')

# 设置x轴标签
plt.xlabel('Species')

# 设置y轴标签
plt.ylabel('Sepal Length')

# 展示图形
plt.show()

结果图:

3.绘制多面板图

python 复制代码
import seaborn as sns
import matplotlib.pyplot as plt

# 加载iris数据集
iris = sns.load_dataset('iris')

# 使用jointplot绘制多面板图
sns.jointplot(x='sepal_length', y='sepal_width', data=iris, kind='scatter')

# 设置图形标题
plt.suptitle('Joint Plot of Sepal Length and Sepal Width')

# 展示图形
plt.show()

结果图:

4.绘制等高线图

python 复制代码
import seaborn as sns
import matplotlib.pyplot as plt

# 加载iris数据集
iris = sns.load_dataset('iris')

# 使用kdeplot绘制两个变量的等高线图
sns.kdeplot(data=iris, x='sepal_length', y='sepal_width', cmap='viridis', shade=True)

# 设置图形标题
plt.title('Contour Plot of Sepal Length and Sepal Width')

# 展示图形
plt.show()

结果图:

5.绘制热力图

python 复制代码
import seaborn as sns
import matplotlib.pyplot as plt

# 加载flights数据集
flights = sns.load_dataset('flights')

# 使用pivot_table函数从原始数据中生成矩阵
matrix = flights.pivot_table(index='month', columns='year', values='passengers')

# 使用heatmap函数绘制热力图
sns.heatmap(data=matrix, cmap='YlGnBu')

# 设置图形标题
plt.title('Heatmap of Passenger Data')

# 展示图形
plt.show()

结果图:

相关推荐
A***07171 小时前
React数据可视化应用
前端·react.js·信息可视化
二川bro4 小时前
数据可视化进阶:Python动态图表制作实战
开发语言·python·信息可视化
学术小白人5 小时前
会议第一轮投稿!2026年物联网、数据科学与先进计算国际学术会议(IDSAC2026)
人工智能·物联网·数据分析·能源·制造·教育·rdlink研发家
7***37456 小时前
DeepSeek在文本分类中的多标签学习
学习·分类·数据挖掘
用户199701080187 小时前
1688图片搜索API | 上传图片秒找同款 | 相似商品精准推荐
大数据·数据挖掘·图片资源
X***E46313 小时前
前端数据分析应用
前端·数据挖掘·数据分析
毕设源码-邱学长13 小时前
【开题答辩全过程】以 海鲜市场销售数据分析与预测系统为例,包含答辩的问题和答案
数据挖掘·数据分析
q***25120 小时前
Python中的简单爬虫
爬虫·python·信息可视化
最晚的py20 小时前
Python Matplotlib
python·数据分析