Seaborn数据可视化(四)

目录

1.绘制箱线图

2.绘制小提琴图

3.绘制多面板图

4.绘制等高线图

5.绘制热力图


1.绘制箱线图

python 复制代码
import seaborn as sns
import matplotlib.pyplot as plt
# 加载示例数据(例如,使用seaborn自带的数据集)
tips = sns.load_dataset("tips")

# 使用boxplot绘制箱线图
sns.boxplot(x='day', y='total_bill', data=tips)

# 展示图形
plt.show()

结果图:

2.绘制小提琴图

python 复制代码
import seaborn as sns
import matplotlib.pyplot as plt

# 加载iris数据集
iris = sns.load_dataset('iris')

# 使用violinplot绘制小提琴图
sns.violinplot(x='species', y='sepal_length', data=iris)

# 设置图形标题
plt.title('Violin Plot of Sepal Length')

# 设置x轴标签
plt.xlabel('Species')

# 设置y轴标签
plt.ylabel('Sepal Length')

# 展示图形
plt.show()

结果图:

3.绘制多面板图

python 复制代码
import seaborn as sns
import matplotlib.pyplot as plt

# 加载iris数据集
iris = sns.load_dataset('iris')

# 使用jointplot绘制多面板图
sns.jointplot(x='sepal_length', y='sepal_width', data=iris, kind='scatter')

# 设置图形标题
plt.suptitle('Joint Plot of Sepal Length and Sepal Width')

# 展示图形
plt.show()

结果图:

4.绘制等高线图

python 复制代码
import seaborn as sns
import matplotlib.pyplot as plt

# 加载iris数据集
iris = sns.load_dataset('iris')

# 使用kdeplot绘制两个变量的等高线图
sns.kdeplot(data=iris, x='sepal_length', y='sepal_width', cmap='viridis', shade=True)

# 设置图形标题
plt.title('Contour Plot of Sepal Length and Sepal Width')

# 展示图形
plt.show()

结果图:

5.绘制热力图

python 复制代码
import seaborn as sns
import matplotlib.pyplot as plt

# 加载flights数据集
flights = sns.load_dataset('flights')

# 使用pivot_table函数从原始数据中生成矩阵
matrix = flights.pivot_table(index='month', columns='year', values='passengers')

# 使用heatmap函数绘制热力图
sns.heatmap(data=matrix, cmap='YlGnBu')

# 设置图形标题
plt.title('Heatmap of Passenger Data')

# 展示图形
plt.show()

结果图:

相关推荐
leo__52031 分钟前
基于LDA的数据降维:原理与MATLAB实现
开发语言·matlab·信息可视化
未来魔导2 小时前
go语言中json操作总结(下)
数据分析·go·json
Mia@6 小时前
数据分析(一)
数据挖掘·数据分析
imbackneverdie8 小时前
国自然申报技术路线图模板
图像处理·人工智能·信息可视化·数据可视化·学术·国自然·国家自然科学基金
小脉传媒GEO8 小时前
GEO优化数据统计系统DeepAnaX系统详细介绍:您的AI生态数据可视化与智能决策中枢
人工智能·信息可视化
ASD123asfadxv8 小时前
基于YOLO11的汽车车灯状态识别与分类_C3k2-wConv改进_1
分类·数据挖掘·汽车
小辉懂编程9 小时前
数据分析入门:使用pandas进行数据处理 (数据读取,数据清洗,数据处理,数据可视化)
数据挖掘·数据分析·pandas
祝威廉11 小时前
摘下数据分析的皇冠:机器学习,InfiniSynapse 金融评分卡案例
人工智能·机器学习·金融·数据挖掘·数据分析
祁思妙想11 小时前
数据分析三剑客:NumPy、Pandas、Matplotlib
数据分析·numpy·pandas
SelectDB11 小时前
较 Trino 省 67% 成本,速度快 10 倍,中通快递基于 SelectDB 的湖仓分析架构
数据库·数据分析