机器学习之前向传播(Forward Propagation)和反向传播(Back propagation)

前向传播(Forward Propagation)和反向传播(Back propagation)是深度学习中神经网络训练的两个关键步骤。

前向传播(Forward Propagation)

  1. 定义:前向传播是指从神经网络的输入层到输出层的过程,通过输入数据和当前的模型参数,计算网络的输出。

  2. 步骤:在前向传播中,数据从输入层经过各个中间层(隐层)的神经元,经过加权和激活函数的计算,传递到输出层,最终得到模型的预测输出。

  3. 目的:前向传播用于计算模型的预测值,以便与实际目标值进行比较,计算损失函数(误差)。

反向传播(Backpropagation)

  1. 定义:反向传播是指在前向传播之后,通过计算损失函数对模型参数的梯度,从输出层反向传递梯度信息,以便更新模型参数。

  2. 步骤:反向传播通过链式法则计算梯度,从输出层开始,将损失函数对每个参数的梯度向后传递到每一层,以确定每个参数的梯度。

  3. 目的:反向传播的目的是计算模型参数的梯度,以便使用梯度下降等优化算法来更新参数,最小化损失函数,使模型更好地拟合训练数据。

关键要点:

  • 前向传播用于计算预测输出和损失函数。
  • 反向传播用于计算参数梯度,以便进行参数更新。
  • 反向传播是自动微分的一种形式,它有效地计算了损失函数对每个参数的偏导数。
  • 反向传播是训练神经网络的基础,通过迭代前向传播和反向传播来优化网络参数,使其逐渐收敛到最优解。
  • 深度学习框架(如TensorFlow、PyTorch)通常会自动处理前向传播和反向传播的计算,简化了模型训练的过程。

前向传播和反向传播是神经网络训练的核心过程,它们允许模型根据数据不断调整参数,以逐渐提高模型性能。

相关推荐
leo__5207 小时前
基于MATLAB的交互式多模型跟踪算法(IMM)实现
人工智能·算法·matlab
脑极体7 小时前
云厂商的AI决战
人工智能
njsgcs8 小时前
NVIDIA NitroGen 是强化学习还是llm
人工智能
知乎的哥廷根数学学派8 小时前
基于多模态特征融合和可解释性深度学习的工业压缩机异常分类与预测性维护智能诊断(Python)
网络·人工智能·pytorch·python·深度学习·机器学习·分类
mantch8 小时前
Nano Banana进行AI绘画中文总是糊?一招可重新渲染,清晰到可直接汇报
人工智能·aigc
编程小白_正在努力中9 小时前
第1章 机器学习基础
人工智能·机器学习
wyw00009 小时前
目标检测之SSD
人工智能·目标检测·计算机视觉
AKAMAI9 小时前
圆满循环:Akamai 的演进如何为 AI 推理时代奠定基石
人工智能·云计算
幻云20109 小时前
AI自动化编排:从入门到精通(基于Dify构建AI智能系统)
运维·人工智能·自动化
CoderJia程序员甲9 小时前
GitHub 热榜项目 - 日榜(2026-1-13)
人工智能·ai·大模型·github·ai教程