机器学习之前向传播(Forward Propagation)和反向传播(Back propagation)

前向传播(Forward Propagation)和反向传播(Back propagation)是深度学习中神经网络训练的两个关键步骤。

前向传播(Forward Propagation)

  1. 定义:前向传播是指从神经网络的输入层到输出层的过程,通过输入数据和当前的模型参数,计算网络的输出。

  2. 步骤:在前向传播中,数据从输入层经过各个中间层(隐层)的神经元,经过加权和激活函数的计算,传递到输出层,最终得到模型的预测输出。

  3. 目的:前向传播用于计算模型的预测值,以便与实际目标值进行比较,计算损失函数(误差)。

反向传播(Backpropagation)

  1. 定义:反向传播是指在前向传播之后,通过计算损失函数对模型参数的梯度,从输出层反向传递梯度信息,以便更新模型参数。

  2. 步骤:反向传播通过链式法则计算梯度,从输出层开始,将损失函数对每个参数的梯度向后传递到每一层,以确定每个参数的梯度。

  3. 目的:反向传播的目的是计算模型参数的梯度,以便使用梯度下降等优化算法来更新参数,最小化损失函数,使模型更好地拟合训练数据。

关键要点:

  • 前向传播用于计算预测输出和损失函数。
  • 反向传播用于计算参数梯度,以便进行参数更新。
  • 反向传播是自动微分的一种形式,它有效地计算了损失函数对每个参数的偏导数。
  • 反向传播是训练神经网络的基础,通过迭代前向传播和反向传播来优化网络参数,使其逐渐收敛到最优解。
  • 深度学习框架(如TensorFlow、PyTorch)通常会自动处理前向传播和反向传播的计算,简化了模型训练的过程。

前向传播和反向传播是神经网络训练的核心过程,它们允许模型根据数据不断调整参数,以逐渐提高模型性能。

相关推荐
机器之心20 分钟前
刚刚,苹果基础模型团队负责人庞若鸣被Meta挖走!加入超级智能团队、年薪千万美元
人工智能
G.E.N.1 小时前
开源!RAG竞技场(2):标准RAG算法
大数据·人工智能·深度学习·神经网络·算法·llm·rag
西西弗Sisyphus1 小时前
如果让计算机理解人类语言- Word2Vec(Word to Vector,2013)
人工智能·word·word2vec
前端双越老师2 小时前
30 行代码 langChain.js 开发你的第一个 Agent
人工智能·node.js·agent
东坡肘子2 小时前
高温与奇怪的天象 | 肘子的 Swift 周报 #092
人工智能·swiftui·swift
KaneLogger2 小时前
视频转文字,别再反复拖进度条了
前端·javascript·人工智能
度假的小鱼2 小时前
从 “人工编码“ 到 “AI 协同“:大模型如何重塑软件开发的效率与范式
人工智能
zm-v-159304339863 小时前
ArcGIS 水文分析升级:基于深度学习的流域洪水演进过程模拟
人工智能·深度学习·arcgis
拓端研究室4 小时前
视频讲解|核密度估计朴素贝叶斯:业务数据分类—从理论到实践
人工智能·分类·数据挖掘