机器学习之前向传播(Forward Propagation)和反向传播(Back propagation)

前向传播(Forward Propagation)和反向传播(Back propagation)是深度学习中神经网络训练的两个关键步骤。

前向传播(Forward Propagation)

  1. 定义:前向传播是指从神经网络的输入层到输出层的过程,通过输入数据和当前的模型参数,计算网络的输出。

  2. 步骤:在前向传播中,数据从输入层经过各个中间层(隐层)的神经元,经过加权和激活函数的计算,传递到输出层,最终得到模型的预测输出。

  3. 目的:前向传播用于计算模型的预测值,以便与实际目标值进行比较,计算损失函数(误差)。

反向传播(Backpropagation)

  1. 定义:反向传播是指在前向传播之后,通过计算损失函数对模型参数的梯度,从输出层反向传递梯度信息,以便更新模型参数。

  2. 步骤:反向传播通过链式法则计算梯度,从输出层开始,将损失函数对每个参数的梯度向后传递到每一层,以确定每个参数的梯度。

  3. 目的:反向传播的目的是计算模型参数的梯度,以便使用梯度下降等优化算法来更新参数,最小化损失函数,使模型更好地拟合训练数据。

关键要点:

  • 前向传播用于计算预测输出和损失函数。
  • 反向传播用于计算参数梯度,以便进行参数更新。
  • 反向传播是自动微分的一种形式,它有效地计算了损失函数对每个参数的偏导数。
  • 反向传播是训练神经网络的基础,通过迭代前向传播和反向传播来优化网络参数,使其逐渐收敛到最优解。
  • 深度学习框架(如TensorFlow、PyTorch)通常会自动处理前向传播和反向传播的计算,简化了模型训练的过程。

前向传播和反向传播是神经网络训练的核心过程,它们允许模型根据数据不断调整参数,以逐渐提高模型性能。

相关推荐
Toky丶1 分钟前
【文献阅读】Optimum Quanto:量化工作流与数学公式整合笔记
人工智能·深度学习·机器学习
橙露2 分钟前
李一舟人工智能 2.0 视频分享:解锁 AI 时代核心竞争力
人工智能
Brian Xia3 分钟前
从 0 开始手写 AI Agent 框架:nano-agentscope(二)框架搭建
人工智能·python·ai
2503_946971863 分钟前
【Virtualization/AGI】2026年度全沉浸式虚拟化架构与AGI沙箱逃逸基准索引 (Benchmark Index)
人工智能·网络安全·系统架构·数据集·元宇宙
guygg885 分钟前
经典信道估计MATLAB实现(含LSMMSE算法)
深度学习·算法·matlab
易晨 微盛·企微管家9 分钟前
2026连锁品牌SCRM系统最新排名:企业微信生态下微盛·企微管家领跑
人工智能·企业微信
新知图书21 分钟前
FastGPT工作流的节点
人工智能·fastgpt·ai agent·智能体·大模型应用开发
乾元22 分钟前
网络切片的自动化配置与 SLA 保证——5G / 专网场景中,从“逻辑隔离”到“可验证承诺”的工程实现
运维·开发语言·网络·人工智能·网络协议·重构
小程故事多_8024 分钟前
RCAgent,基于LLM自主智能体的云平台根因分析实践与探索
人工智能·aigc
CHrisFC25 分钟前
中小型第三方环境检测实验室的数字化破局之选——江苏硕晟LIMS
大数据·运维·人工智能