机器学习之前向传播(Forward Propagation)和反向传播(Back propagation)

前向传播(Forward Propagation)和反向传播(Back propagation)是深度学习中神经网络训练的两个关键步骤。

前向传播(Forward Propagation)

  1. 定义:前向传播是指从神经网络的输入层到输出层的过程,通过输入数据和当前的模型参数,计算网络的输出。

  2. 步骤:在前向传播中,数据从输入层经过各个中间层(隐层)的神经元,经过加权和激活函数的计算,传递到输出层,最终得到模型的预测输出。

  3. 目的:前向传播用于计算模型的预测值,以便与实际目标值进行比较,计算损失函数(误差)。

反向传播(Backpropagation)

  1. 定义:反向传播是指在前向传播之后,通过计算损失函数对模型参数的梯度,从输出层反向传递梯度信息,以便更新模型参数。

  2. 步骤:反向传播通过链式法则计算梯度,从输出层开始,将损失函数对每个参数的梯度向后传递到每一层,以确定每个参数的梯度。

  3. 目的:反向传播的目的是计算模型参数的梯度,以便使用梯度下降等优化算法来更新参数,最小化损失函数,使模型更好地拟合训练数据。

关键要点:

  • 前向传播用于计算预测输出和损失函数。
  • 反向传播用于计算参数梯度,以便进行参数更新。
  • 反向传播是自动微分的一种形式,它有效地计算了损失函数对每个参数的偏导数。
  • 反向传播是训练神经网络的基础,通过迭代前向传播和反向传播来优化网络参数,使其逐渐收敛到最优解。
  • 深度学习框架(如TensorFlow、PyTorch)通常会自动处理前向传播和反向传播的计算,简化了模型训练的过程。

前向传播和反向传播是神经网络训练的核心过程,它们允许模型根据数据不断调整参数,以逐渐提高模型性能。

相关推荐
Warren2Lynch7 小时前
利用 AI 协作优化软件更新逻辑:构建清晰的 UML 顺序图指南
人工智能·uml
ModelWhale7 小时前
当“AI+制造”遇上商业航天:和鲸助力头部企业,构建火箭研发 AI 中台
人工智能
ATMQuant7 小时前
量化指标解码13:WaveTrend波浪趋势 - 震荡行情的超买超卖捕手
人工智能·ai·金融·区块链·量化交易·vnpy
weixin_509138347 小时前
语义流形探索:大型语言模型中可控涌现路径的实证证据
人工智能·语义空间
soldierluo7 小时前
大模型的召回率
人工智能·机器学习
Gofarlic_oms17 小时前
Windchill用户登录与模块访问失败问题排查与许可证诊断
大数据·运维·网络·数据库·人工智能
童话名剑7 小时前
人脸识别(吴恩达深度学习笔记)
人工智能·深度学习·人脸识别·siamese网络·三元组损失函数
_YiFei7 小时前
2026年AIGC检测通关攻略:降ai率工具深度测评(含免费降ai率方案)
人工智能·aigc
GISer_Jing8 小时前
AI Agent 智能体系统:A2A通信与资源优化之道
人工智能·aigc
Dev7z8 小时前
基于深度学习的车辆分类方法研究与实现-填补国内新能源车型和品牌识别空白
深度学习·yolo