机器学习之前向传播(Forward Propagation)和反向传播(Back propagation)

前向传播(Forward Propagation)和反向传播(Back propagation)是深度学习中神经网络训练的两个关键步骤。

前向传播(Forward Propagation)

  1. 定义:前向传播是指从神经网络的输入层到输出层的过程,通过输入数据和当前的模型参数,计算网络的输出。

  2. 步骤:在前向传播中,数据从输入层经过各个中间层(隐层)的神经元,经过加权和激活函数的计算,传递到输出层,最终得到模型的预测输出。

  3. 目的:前向传播用于计算模型的预测值,以便与实际目标值进行比较,计算损失函数(误差)。

反向传播(Backpropagation)

  1. 定义:反向传播是指在前向传播之后,通过计算损失函数对模型参数的梯度,从输出层反向传递梯度信息,以便更新模型参数。

  2. 步骤:反向传播通过链式法则计算梯度,从输出层开始,将损失函数对每个参数的梯度向后传递到每一层,以确定每个参数的梯度。

  3. 目的:反向传播的目的是计算模型参数的梯度,以便使用梯度下降等优化算法来更新参数,最小化损失函数,使模型更好地拟合训练数据。

关键要点:

  • 前向传播用于计算预测输出和损失函数。
  • 反向传播用于计算参数梯度,以便进行参数更新。
  • 反向传播是自动微分的一种形式,它有效地计算了损失函数对每个参数的偏导数。
  • 反向传播是训练神经网络的基础,通过迭代前向传播和反向传播来优化网络参数,使其逐渐收敛到最优解。
  • 深度学习框架(如TensorFlow、PyTorch)通常会自动处理前向传播和反向传播的计算,简化了模型训练的过程。

前向传播和反向传播是神经网络训练的核心过程,它们允许模型根据数据不断调整参数,以逐渐提高模型性能。

相关推荐
时见先生5 小时前
Python库和conda搭建虚拟环境
开发语言·人工智能·python·自然语言处理·conda
昨夜见军贴06167 小时前
IACheck AI审核在生产型企业质量控制记录中的实践探索——全面赋能有关物质研究合规升级
大数据·人工智能
智星云算力7 小时前
智星云镜像共享全流程指南,附避坑手册(新手必看)
人工智能
盖雅工场7 小时前
驱动千店销售转化提升10%:3C零售门店的人效优化实战方案
大数据·人工智能·零售·数字化管理·智能排班·零售排班
Loo国昌8 小时前
深入理解 FastAPI:Python高性能API框架的完整指南
开发语言·人工智能·后端·python·langchain·fastapi
发哥来了8 小时前
【AI视频创作】【评测】【核心能力与成本效益】
大数据·人工智能
醉舞经阁半卷书18 小时前
Python机器学习常用库快速精通
人工智能·python·深度学习·机器学习·数据挖掘·数据分析·scikit-learn
产品何同学9 小时前
在线问诊医疗APP如何设计?2套原型拆解与AI生成原型图实战
人工智能·产品经理·健康医疗·在线问诊·app原型·ai生成原型图·医疗app
星爷AG I9 小时前
9-14 知觉整合(AGI基础理论)
人工智能·agi
开源技术9 小时前
Violit: Streamlit杀手,无需全局刷新,构建AI面板
人工智能·python