Expected all tensors to be on the same device, but found at least two devices

Expected all tensors to be on the same device, but found at least two devices,

原因是计算的过程中,两个不同类型的变量在一起进行运算,即一个变量存储在gpu中,一个变量存储在cpu中,两个变量的存储位置冲突,导致无法计算,把变量统一下就行

python 复制代码
    x = x + kp_x_ofst
    y = y + kp_y_ofst
    x = torch.reshape(x, [-1])  
    y = torch.reshape(y, [-1])
    
    x = x.to('cpu')
    y = y.to('cpu')
 
    x0 = torch.floor(x).to(torch.int32)
    x1 = x0 + 1
    y0 = torch.floor(y).to(torch.int32)
    y1 = y0 + 1
    # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    x0 = torch.clamp(x0, zero, max_x)
    x1 = torch.clamp(x1, zero, max_x)
    y0 = torch.clamp(y0, zero, max_y)
    y1 = torch.clamp(y1, zero, max_y)
相关推荐
LucDelton1 小时前
模型微调思路
人工智能·深度学习·机器学习
Fleshy数模2 小时前
从一条直线开始:线性回归的底层逻辑与实战
人工智能·机器学习·概率论
林深现海2 小时前
【刘二大人】PyTorch深度学习实践笔记 —— 第四集:反向传播(凝练版)
pytorch·python·numpy
哥布林学者2 小时前
吴恩达深度学习课程五:自然语言处理 第三周:序列模型与注意力机制 课后习题与代码实践
深度学习·ai
AAD555888992 小时前
压接工具检测识别----RPN-R50-Caffe-C4模型训练与优化
人工智能·深度学习
流㶡2 小时前
逻辑回归实战:从原理到不平衡数据优化(含欠拟合/过拟合诊断与召回率提升)
算法·机器学习·逻辑回归
OLOLOadsd1232 小时前
基于NAS-FCOS的拥挤路段车辆检测系统:R50-Caffe-FPN-NASHead-GN-Head模型训练与优化_1
人工智能·深度学习
lrh1228003 小时前
详解决策树算法:分类任务核心原理、形成流程与剪枝优化
算法·决策树·机器学习
Network_Engineer3 小时前
从零手写RNN&BiRNN:从原理到双向实现
人工智能·rnn·深度学习·神经网络
机器学习之心3 小时前
Bayes-TCN+SHAP分析贝叶斯优化深度学习多变量分类预测可解释性分析!Matlab完整代码
深度学习·matlab·分类·贝叶斯优化深度学习