Expected all tensors to be on the same device, but found at least two devices

Expected all tensors to be on the same device, but found at least two devices,

原因是计算的过程中,两个不同类型的变量在一起进行运算,即一个变量存储在gpu中,一个变量存储在cpu中,两个变量的存储位置冲突,导致无法计算,把变量统一下就行

python 复制代码
    x = x + kp_x_ofst
    y = y + kp_y_ofst
    x = torch.reshape(x, [-1])  
    y = torch.reshape(y, [-1])
    
    x = x.to('cpu')
    y = y.to('cpu')
 
    x0 = torch.floor(x).to(torch.int32)
    x1 = x0 + 1
    y0 = torch.floor(y).to(torch.int32)
    y1 = y0 + 1
    # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    x0 = torch.clamp(x0, zero, max_x)
    x1 = torch.clamp(x1, zero, max_x)
    y0 = torch.clamp(y0, zero, max_y)
    y1 = torch.clamp(y1, zero, max_y)
相关推荐
取酒鱼食--【余九】18 分钟前
深度学习经典网络解析:ResNet
网络·人工智能·深度学习·神经网络·resnet·卷积神经网络·残差神经网络
QT 小鲜肉1 小时前
【个人成长笔记】在Ubuntu中的Linux系统安装 anaconda 及其相关终端命令行
linux·笔记·深度学习·学习·ubuntu·学习方法
人机与认知实验室2 小时前
触摸大语言模型的边界
人工智能·深度学习·机器学习·语言模型·自然语言处理
java1234_小锋2 小时前
TensorFlow2 Python深度学习 - TensorFlow2框架入门 - 使用Keras实现分类问题
python·深度学习·tensorflow·tensorflow2
ARM+FPGA+AI工业主板定制专家2 小时前
基于Jetson+GMSL AI相机的工业高动态视觉感知方案
人工智能·机器学习·fpga开发·自动驾驶
做科研的周师兄3 小时前
【机器学习入门】7.4 随机森林:一文吃透随机森林——从原理到核心特点
人工智能·学习·算法·随机森林·机器学习·支持向量机·数据挖掘
第七序章3 小时前
【C++】AVL树的平衡机制与实现详解(附思维导图)
c语言·c++·人工智能·机器学习
晨非辰4 小时前
【面试高频数据结构(四)】--《从单链到双链的进阶,读懂“双向奔赴”的算法之美与效率权衡》
java·数据结构·c++·人工智能·算法·机器学习·面试
惜月_treasure5 小时前
LlamaIndex多模态RAG开发实现详解
开发语言·python·机器学习
长鸳词羡5 小时前
LoRA微调
人工智能·深度学习·机器学习