Expected all tensors to be on the same device, but found at least two devices

Expected all tensors to be on the same device, but found at least two devices,

原因是计算的过程中,两个不同类型的变量在一起进行运算,即一个变量存储在gpu中,一个变量存储在cpu中,两个变量的存储位置冲突,导致无法计算,把变量统一下就行

python 复制代码
    x = x + kp_x_ofst
    y = y + kp_y_ofst
    x = torch.reshape(x, [-1])  
    y = torch.reshape(y, [-1])
    
    x = x.to('cpu')
    y = y.to('cpu')
 
    x0 = torch.floor(x).to(torch.int32)
    x1 = x0 + 1
    y0 = torch.floor(y).to(torch.int32)
    y1 = y0 + 1
    # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    x0 = torch.clamp(x0, zero, max_x)
    x1 = torch.clamp(x1, zero, max_x)
    y0 = torch.clamp(y0, zero, max_y)
    y1 = torch.clamp(y1, zero, max_y)
相关推荐
Mr.Winter`2 小时前
深度强化学习 | 图文详细推导软性演员-评论家SAC算法原理
人工智能·深度学习·神经网络·机器学习·数据挖掘·机器人·强化学习
强盛小灵通专卖员2 小时前
分类分割详细指标说明
人工智能·深度学习·算法·机器学习
蜡笔小新..8 小时前
从零开始:用PyTorch构建CIFAR-10图像分类模型达到接近1的准确率
人工智能·pytorch·机器学习·分类·cifar-10
沅_Yuan8 小时前
基于小波神经网络(WNN)的回归预测模型【MATLAB】
深度学习·神经网络·matlab·回归·小波神经网络·wnn
视觉语言导航9 小时前
湖南大学3D场景问答最新综述!3D-SQA:3D场景问答助力具身智能场景理解
人工智能·深度学习·具身智能
Hi-Dison9 小时前
神经网络极简入门技术分享
人工智能·深度学习·神经网络
奋斗者1号9 小时前
机器学习之决策树模型:从基础概念到条件类型详解
人工智能·决策树·机器学习
张小九9910 小时前
PyTorch的dataloader制作自定义数据集
人工智能·pytorch·python
Panesle10 小时前
分布式异步强化学习框架训练32B大模型:INTELLECT-2
人工智能·分布式·深度学习·算法·大模型
lqjun082711 小时前
Focal Loss 原理详解及 PyTorch 代码实现
人工智能·pytorch·python