Expected all tensors to be on the same device, but found at least two devices

Expected all tensors to be on the same device, but found at least two devices,

原因是计算的过程中,两个不同类型的变量在一起进行运算,即一个变量存储在gpu中,一个变量存储在cpu中,两个变量的存储位置冲突,导致无法计算,把变量统一下就行

python 复制代码
    x = x + kp_x_ofst
    y = y + kp_y_ofst
    x = torch.reshape(x, [-1])  
    y = torch.reshape(y, [-1])
    
    x = x.to('cpu')
    y = y.to('cpu')
 
    x0 = torch.floor(x).to(torch.int32)
    x1 = x0 + 1
    y0 = torch.floor(y).to(torch.int32)
    y1 = y0 + 1
    # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    x0 = torch.clamp(x0, zero, max_x)
    x1 = torch.clamp(x1, zero, max_x)
    y0 = torch.clamp(y0, zero, max_y)
    y1 = torch.clamp(y1, zero, max_y)
相关推荐
love is sour39 分钟前
理解全连接层:深度学习中的基础构建块
人工智能·深度学习
WGS.7 小时前
llama factory 扩充词表训练
深度学习
Khunkin9 小时前
牛顿迭代法:用几何直觉理解方程求根
机器学习
音视频牛哥10 小时前
超清≠清晰:视频系统里的分辨率陷阱与秩序真相
人工智能·机器学习·计算机视觉·音视频·大牛直播sdk·rtsp播放器rtmp播放器·smartmediakit
Coovally AI模型快速验证11 小时前
当视觉语言模型接收到相互矛盾的信息时,它会相信哪个信号?
人工智能·深度学习·算法·机器学习·目标跟踪·语言模型
居7然11 小时前
Attention注意力机制:原理、实现与优化全解析
人工智能·深度学习·大模型·transformer·embedding
Python图像识别13 小时前
75_基于深度学习的咖啡叶片病害检测系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
python·深度学习·yolo
PyAIGCMaster13 小时前
钉钉的设计理念方面,我可以学习
人工智能·深度学习·学习·钉钉
sensen_kiss13 小时前
INT305 Machine Learning 机器学习 Pt.5 神经网络(Neural network)
人工智能·神经网络·机器学习