机器学习:无监督学习

文章目录

线性学习方法

聚类Clustering

Kmeans

随机选取K个中心,然后计算每个点与中心的距离,找最近的,然后更新中心点

HAC


如何觉得距离的个数跟kmeans不一样,切的地方不一样导致的数量会不一样。

分布表示

降维



PCA

特征先归一化,然后计算投影,选择最大的方差的



w 1 w_1 w1 与 w 2 w_2 w2是垂直的,后续也是找垂直于它们的 w 3 w_3 w3 ...看需要多少维。



w 1 w1 w1就是最大的特征向量。然后找下一个 w 2 w2 w2



基本的内容组成,直线,点,斜线,圆圈等。一个数字就能用这些进行表示:








在强度,生命力,攻击力等方面各有侧重





Matrix Factorization

元素之间有些相同的特点。

这些事情是没有人知道的。

有的是只有这种关系矩阵,如果基于这些关系推断出关系:

可以将这个进行矩阵分解,得到两个向量相乘,但是会存在那种缺失值的话,可以考虑使用梯度下降方法:

只考虑有定义的值。

就可以预测缺失的值,然后就能判断每个人对某个物体的喜好程度,填充:

该算法可以用于推荐系统。

可以考虑通过梯度下降算法硬解一下。

MF也可以用于主题分析,LSA


Manifold Learning

从立体变成2d

LLE





Laplacian Eigenmaps



t-SEN

coil-20数据

两个分布越接近越好,KL散度,对这个问题做梯度下降的。

这种相似度计算方式会维持原来的距离。

相关推荐
Elastic 中国社区官方博客3 小时前
Elasticsearch:理解政府中的人工智能 - 应用、使用案例和实施
大数据·人工智能·elasticsearch·机器学习·搜索引擎·ai·全文检索
嘉图明4 小时前
《符号之纱与血肉之躯:具身智能范式的哲学重构与AI发展新图景》
人工智能·机器学习·重构
databook6 小时前
直线思维的进化:线性到广义线性
python·机器学习·scikit-learn
oioihoii6 小时前
小白入门机器学习概述
人工智能·机器学习
秩序之狐6 小时前
基于机器学习的齿音识别
人工智能·机器学习
蹦蹦跳跳真可爱5896 小时前
Python----机器学习(KNN:决策边界,决策边界计算,交叉验证步骤)
开发语言·人工智能·python·机器学习
Mr.Winter`7 小时前
深度强化学习 | 基于优先级经验池的DQN算法(附Pytorch实现)
人工智能·pytorch·神经网络·机器学习·机器人·强化学习
预测模型的开发与应用研究8 小时前
R语言实现轨迹分析--traj和lcmm包体会
机器学习·数据分析·r语言
Watermelo61710 小时前
Manus使用的MCP协议是什么?人工智能知识分享的“万能插头”
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·数据挖掘
这就是编程11 小时前
自回归模型的新浪潮?GPT-4o图像生成技术解析与未来展望
人工智能·算法·机器学习·数据挖掘·回归