机器学习:无监督学习

文章目录

线性学习方法

聚类Clustering

Kmeans

随机选取K个中心,然后计算每个点与中心的距离,找最近的,然后更新中心点

HAC


如何觉得距离的个数跟kmeans不一样,切的地方不一样导致的数量会不一样。

分布表示

降维



PCA

特征先归一化,然后计算投影,选择最大的方差的



w 1 w_1 w1 与 w 2 w_2 w2是垂直的,后续也是找垂直于它们的 w 3 w_3 w3 ...看需要多少维。



w 1 w1 w1就是最大的特征向量。然后找下一个 w 2 w2 w2



基本的内容组成,直线,点,斜线,圆圈等。一个数字就能用这些进行表示:








在强度,生命力,攻击力等方面各有侧重





Matrix Factorization

元素之间有些相同的特点。

这些事情是没有人知道的。

有的是只有这种关系矩阵,如果基于这些关系推断出关系:

可以将这个进行矩阵分解,得到两个向量相乘,但是会存在那种缺失值的话,可以考虑使用梯度下降方法:

只考虑有定义的值。

就可以预测缺失的值,然后就能判断每个人对某个物体的喜好程度,填充:

该算法可以用于推荐系统。

可以考虑通过梯度下降算法硬解一下。

MF也可以用于主题分析,LSA


Manifold Learning

从立体变成2d

LLE





Laplacian Eigenmaps



t-SEN

coil-20数据

两个分布越接近越好,KL散度,对这个问题做梯度下降的。

这种相似度计算方式会维持原来的距离。

相关推荐
菜鸟‍1 小时前
【论文学习】通过编辑习得分数函数实现扩散模型中的图像隐藏
人工智能·学习·机器学习
月亮月亮要去太阳1 小时前
基于机器学习的糖尿病预测
人工智能·机器学习
zhishidi2 小时前
推荐算法优缺点及通俗解读
算法·机器学习·推荐算法
奥特曼_ it3 小时前
【机器学习】python旅游数据分析可视化协同过滤算法推荐系统(完整系统源码+数据库+开发笔记+详细部署教程)✅
python·算法·机器学习·数据分析·django·毕业设计·旅游
大千AI助手3 小时前
牛顿法:从最优化到机器学习的二阶收敛之路
人工智能·机器学习·优化算法·梯度下降·牛顿法·大千ai助手·二阶导
Keep__Fighting3 小时前
【机器学习:集成算法】
人工智能·算法·机器学习·pandas·集成学习·sklearn
执笔论英雄4 小时前
【RL】DAPO 详解1.0
人工智能·算法·机器学习
高洁015 小时前
循环神经网络讲解(3)
python·深度学习·神经网络·算法·机器学习
Yolo566Q5 小时前
基于R语言BIOMOD2 及机器学习方法的物种分布模拟与案例分析
开发语言·机器学习·r语言
薛不痒5 小时前
机器学习之python的matplotlib库和sklearn库
python·机器学习·matplotlib