机器学习:无监督学习

文章目录

线性学习方法

聚类Clustering

Kmeans

随机选取K个中心,然后计算每个点与中心的距离,找最近的,然后更新中心点

HAC


如何觉得距离的个数跟kmeans不一样,切的地方不一样导致的数量会不一样。

分布表示

降维



PCA

特征先归一化,然后计算投影,选择最大的方差的



w 1 w_1 w1 与 w 2 w_2 w2是垂直的,后续也是找垂直于它们的 w 3 w_3 w3 ...看需要多少维。



w 1 w1 w1就是最大的特征向量。然后找下一个 w 2 w2 w2



基本的内容组成,直线,点,斜线,圆圈等。一个数字就能用这些进行表示:








在强度,生命力,攻击力等方面各有侧重





Matrix Factorization

元素之间有些相同的特点。

这些事情是没有人知道的。

有的是只有这种关系矩阵,如果基于这些关系推断出关系:

可以将这个进行矩阵分解,得到两个向量相乘,但是会存在那种缺失值的话,可以考虑使用梯度下降方法:

只考虑有定义的值。

就可以预测缺失的值,然后就能判断每个人对某个物体的喜好程度,填充:

该算法可以用于推荐系统。

可以考虑通过梯度下降算法硬解一下。

MF也可以用于主题分析,LSA


Manifold Learning

从立体变成2d

LLE





Laplacian Eigenmaps



t-SEN

coil-20数据

两个分布越接近越好,KL散度,对这个问题做梯度下降的。

这种相似度计算方式会维持原来的距离。

相关推荐
橙汁味的风3 小时前
2EM算法详解
人工智能·算法·机器学习
江上鹤.1484 小时前
Day 49 预训练模型
人工智能·深度学习·机器学习
Java后端的Ai之路5 小时前
【神经网络基础】-深度学习框架学习指南
人工智能·深度学习·神经网络·机器学习
郝学胜-神的一滴5 小时前
机器学习数据集完全指南:从公开资源到Sklearn实战
人工智能·python·程序人生·机器学习·scikit-learn·sklearn
Cherry的跨界思维6 小时前
25、AI时代的数字生存战:爬虫与反爬虫的数据争夺全面解析
人工智能·爬虫·机器学习·python爬虫·python办公自动化·python反爬虫
不会码码8 小时前
L1范数,L2范数,L3范数,切比雪夫距离
机器学习
白日做梦Q8 小时前
预训练模型微调(Finetune)实战:策略、技巧及常见误区规避
人工智能·python·神经网络·机器学习·计算机视觉
Java后端的Ai之路9 小时前
【神经网络基础】-从生物神经元到人工神经元
人工智能·深度学习·神经网络·机器学习
白日做梦Q9 小时前
生成式AI的底层逻辑:GAN、VAE与扩散模型的对比及研究切入点
人工智能·深度学习·机器学习