机器学习:无监督学习

文章目录

线性学习方法

聚类Clustering

Kmeans

随机选取K个中心,然后计算每个点与中心的距离,找最近的,然后更新中心点

HAC


如何觉得距离的个数跟kmeans不一样,切的地方不一样导致的数量会不一样。

分布表示

降维



PCA

特征先归一化,然后计算投影,选择最大的方差的



w 1 w_1 w1 与 w 2 w_2 w2是垂直的,后续也是找垂直于它们的 w 3 w_3 w3 ...看需要多少维。



w 1 w1 w1就是最大的特征向量。然后找下一个 w 2 w2 w2



基本的内容组成,直线,点,斜线,圆圈等。一个数字就能用这些进行表示:








在强度,生命力,攻击力等方面各有侧重





Matrix Factorization

元素之间有些相同的特点。

这些事情是没有人知道的。

有的是只有这种关系矩阵,如果基于这些关系推断出关系:

可以将这个进行矩阵分解,得到两个向量相乘,但是会存在那种缺失值的话,可以考虑使用梯度下降方法:

只考虑有定义的值。

就可以预测缺失的值,然后就能判断每个人对某个物体的喜好程度,填充:

该算法可以用于推荐系统。

可以考虑通过梯度下降算法硬解一下。

MF也可以用于主题分析,LSA


Manifold Learning

从立体变成2d

LLE





Laplacian Eigenmaps



t-SEN

coil-20数据

两个分布越接近越好,KL散度,对这个问题做梯度下降的。

这种相似度计算方式会维持原来的距离。

相关推荐
Teacher.chenchong29 分钟前
现代R语言机器学习:Tidymodel/Tidyverse语法+回归/树模型/集成学习/SVM/深度学习/降维/聚类分类与科研绘图可视化
机器学习·回归·r语言
TomatoSCI32 分钟前
聚类的可视化选择:PCA / t-SNE丨TomatoSCI分析日记
人工智能·机器学习
nju_spy1 小时前
周志华《机器学习导论》第8章 集成学习 Ensemble Learning
人工智能·随机森林·机器学习·集成学习·boosting·bagging·南京大学
星座5281 小时前
基于现代R语言【Tidyverse、Tidymodel】的机器学习方法与案例分析
机器学习·r语言·tidyverse·tidymodel
石迹耿千秋7 小时前
迁移学习--基于torchvision中VGG16模型的实战
人工智能·pytorch·机器学习·迁移学习
Wendy14419 小时前
【线性回归(最小二乘法MSE)】——机器学习
算法·机器学习·线性回归
霖0018 小时前
神经网络项目--基于FPGA的AI简易项目(1-9图片数字识别)
人工智能·pytorch·深度学习·神经网络·机器学习·fpga开发
神经星星18 小时前
英伟达实现原子级蛋白质设计突破,高精度生成多达800个残基的蛋白质
人工智能·深度学习·机器学习
居然JuRan20 小时前
一文看懂 MOE 模型:让大模型像医院看病一样高效工作
人工智能·机器学习
钮钴禄·爱因斯晨1 天前
机器学习:数据清洗与预处理 | Python
人工智能·python·机器学习