机器学习:无监督学习

文章目录

线性学习方法

聚类Clustering

Kmeans

随机选取K个中心,然后计算每个点与中心的距离,找最近的,然后更新中心点

HAC


如何觉得距离的个数跟kmeans不一样,切的地方不一样导致的数量会不一样。

分布表示

降维



PCA

特征先归一化,然后计算投影,选择最大的方差的



w 1 w_1 w1 与 w 2 w_2 w2是垂直的,后续也是找垂直于它们的 w 3 w_3 w3 ...看需要多少维。



w 1 w1 w1就是最大的特征向量。然后找下一个 w 2 w2 w2



基本的内容组成,直线,点,斜线,圆圈等。一个数字就能用这些进行表示:








在强度,生命力,攻击力等方面各有侧重





Matrix Factorization

元素之间有些相同的特点。

这些事情是没有人知道的。

有的是只有这种关系矩阵,如果基于这些关系推断出关系:

可以将这个进行矩阵分解,得到两个向量相乘,但是会存在那种缺失值的话,可以考虑使用梯度下降方法:

只考虑有定义的值。

就可以预测缺失的值,然后就能判断每个人对某个物体的喜好程度,填充:

该算法可以用于推荐系统。

可以考虑通过梯度下降算法硬解一下。

MF也可以用于主题分析,LSA


Manifold Learning

从立体变成2d

LLE





Laplacian Eigenmaps



t-SEN

coil-20数据

两个分布越接近越好,KL散度,对这个问题做梯度下降的。

这种相似度计算方式会维持原来的距离。

相关推荐
Rock_yzh2 小时前
AI学习日记——参数的初始化
人工智能·python·深度学习·学习·机器学习
Learn Beyond Limits6 小时前
Mean Normalization|均值归一化
人工智能·神经网络·算法·机器学习·均值算法·ai·吴恩达
ACERT3336 小时前
5.吴恩达机器学习—神经网络的基本使用
人工智能·python·神经网络·机器学习
Aaplloo6 小时前
【无标题】
人工智能·算法·机器学习
可触的未来,发芽的智生7 小时前
触摸未来2025.10.06:声之密语从生理构造到神经网络的声音智能革命
人工智能·python·神经网络·机器学习·架构
我是Feri8 小时前
机器学习之线性回归的特征相关性:避免“双胞胎特征“干扰模型
人工智能·机器学习
盼小辉丶8 小时前
TensorFlow深度学习实战(39)——机器学习实践指南
深度学习·机器学习·tensorflow
蒋星熠9 小时前
反爬虫机制深度解析:从基础防御到高级对抗的完整技术实战
人工智能·pytorch·爬虫·python·深度学习·机器学习·计算机视觉
唤醒手腕18 小时前
唤醒手腕2025年最新机器学习K近邻算法详细教程
人工智能·机器学习·近邻算法
禁默20 小时前
机器学习基础入门(第四篇):无监督学习与聚类方法
学习·机器学习·聚类