机器学习:无监督学习

文章目录

线性学习方法

聚类Clustering

Kmeans

随机选取K个中心,然后计算每个点与中心的距离,找最近的,然后更新中心点

HAC


如何觉得距离的个数跟kmeans不一样,切的地方不一样导致的数量会不一样。

分布表示

降维



PCA

特征先归一化,然后计算投影,选择最大的方差的



w 1 w_1 w1 与 w 2 w_2 w2是垂直的,后续也是找垂直于它们的 w 3 w_3 w3 ...看需要多少维。



w 1 w1 w1就是最大的特征向量。然后找下一个 w 2 w2 w2



基本的内容组成,直线,点,斜线,圆圈等。一个数字就能用这些进行表示:








在强度,生命力,攻击力等方面各有侧重





Matrix Factorization

元素之间有些相同的特点。

这些事情是没有人知道的。

有的是只有这种关系矩阵,如果基于这些关系推断出关系:

可以将这个进行矩阵分解,得到两个向量相乘,但是会存在那种缺失值的话,可以考虑使用梯度下降方法:

只考虑有定义的值。

就可以预测缺失的值,然后就能判断每个人对某个物体的喜好程度,填充:

该算法可以用于推荐系统。

可以考虑通过梯度下降算法硬解一下。

MF也可以用于主题分析,LSA


Manifold Learning

从立体变成2d

LLE





Laplacian Eigenmaps



t-SEN

coil-20数据

两个分布越接近越好,KL散度,对这个问题做梯度下降的。

这种相似度计算方式会维持原来的距离。

相关推荐
zhangfeng11333 小时前
氨基酸序列表示法,蛋白质序列表达 计算机中机器学习 大语言模型中的表达,为什么没有糖蛋白或者其他基团磷酸化甲基化乙酰化泛素化
人工智能·机器学习·语言模型
OpenBayes4 小时前
教程上新|DeepSeek-OCR 2公式/表格解析同步改善,以低视觉token成本实现近4%的性能跃迁
人工智能·深度学习·目标检测·机器学习·大模型·ocr·gpu算力
Eloudy6 小时前
直接法 读书笔记 01 第1章 引言
人工智能·机器学习·hpc
AEIC学术交流中心6 小时前
【快速EI检索 | SPIE出版】2026年机器学习与大模型国际学术会议(ICMLM 2026)
人工智能·机器学习
Daydream.V7 小时前
逻辑回归实例问题解决(LogisticRegression)
算法·机器学习·逻辑回归
纤纡.8 小时前
逻辑回归实战进阶:交叉验证与采样技术破解数据痛点(二)
算法·机器学习·逻辑回归
岱宗夫up8 小时前
机器学习:标准化流模型(NF)
人工智能·python·机器学习·生成对抗网络
deep_drink8 小时前
【基础知识一】线性代数的核心:从矩阵变换到 SVD 终极奥义
线性代数·机器学习·矩阵
山居秋暝LS8 小时前
Padim模型参数
人工智能·机器学习
Rorsion8 小时前
机器学习过程(从机器学习到深度学习)
人工智能·深度学习·机器学习