Decoupling Knowledge from Memorization: Retrieval-augmented Prompt Learning

本文是LLM系列的文章,针对《Decoupling Knowledge from Memorization:

Retrieval

知识与记忆的解耦:检索增强的提示学习

  • 摘要
  • [1 引言](#1 引言)
  • [2 提示学习的前言](#2 提示学习的前言)
  • [3 RETROPROMPT:检索增强的提示学习](#3 RETROPROMPT:检索增强的提示学习)
  • [4 实验](#4 实验)
  • [5 相关实验](#5 相关实验)
  • [6 结论与未来工作](#6 结论与未来工作)

摘要

提示学习方法在仍然遵循基于参数的学习范式的同时,通过诱导更好的小样本表现,在自然语言处理中掀起了波澜;学习中的遗忘和死记硬背问题可能会遇到不稳定的泛化问题。具体来说,在完全监督的训练中,朴素的提示学习可能很难死记硬背地利用非典型实例,或者用低样本数据过度拟合浅层模式。为了缓解这些限制,我们开发了RETROPROMPT,其动机是将知识与记忆脱钩,以帮助模型在泛化和记忆之间取得平衡。与普通的提示学习相比,RETROPROPT从训练实例中构建了一个开卷知识库,并在输入、训练和推理过程中实现了检索机制,从而使模型能够从训练语料库中检索相关上下文作为增强的线索。大量的实验表明,RETROPROPT可以在小样本和零样本设置中获得更好的性能。此外,我们还进一步说明了我们提出的RETROPROPT可以在新的数据集上产生更好的泛化能力。对记忆的详细分析确实表明,RETROPROMPT可以减少语言模型对记忆的依赖;因此,提高了下游任务的泛化能力。

1 引言

2 提示学习的前言

3 RETROPROMPT:检索增强的提示学习

4 实验

5 相关实验

6 结论与未来工作

我们提出了通过引入检索增强来将知识与记忆解耦的RETROPROPT,以进一步提高输入端提示学习的泛化能力以及模型训练和预测的整个过程。RETROPROPT是一种简单而有效的检索方法,它结合了神经演示、用于训练和预测的kNN指南。我们的广泛研究结果表明,它在小样本、零样本和全监督设置中优于其他演示增强提示方法和知识增强提示方法。分析记忆的本质,验证了知识与记忆脱钩的有效性。有趣的未来方向包括:1)应用于其他任务,如QA和NLG,2)探索用于无监督学习的噪声数据挖掘,3)进一步提高大型数据集的检索效率,等等。

相关推荐
陈天伟教授8 小时前
人工智能应用- 语言理解:04.大语言模型
人工智能·语言模型·自然语言处理
lili-felicity10 小时前
#CANN AIGC文生图轻量推理:Prompt优化算子插件开发
prompt·aigc
猫头虎11 小时前
2026年AI产业13大趋势预测:Vibe Coding创作者经济元年到来,占冰强专家解读AIGC未来图景
人工智能·开源·prompt·aigc·ai编程·远程工作·agi
算法狗212 小时前
大模型面试题:混合精度训练的缺点是什么
人工智能·深度学习·机器学习·语言模型
哈__12 小时前
CANN加速语音识别ASR推理:声学模型与语言模型融合优化
人工智能·语言模型·语音识别
kjkdd13 小时前
6.1 核心组件(Agent)
python·ai·语言模型·langchain·ai编程
Kiyra14 小时前
作为后端开发你不得不知的 AI 知识——Prompt(提示词)
人工智能·prompt
松☆16 小时前
CANN与大模型推理:在边缘端高效运行7B参数语言模型的实践指南
人工智能·算法·语言模型
陈天伟教授16 小时前
人工智能应用- 语言理解:05.大语言模型
人工智能·语言模型·自然语言处理
晚霞的不甘17 小时前
守护智能边界:CANN 的 AI 安全机制深度解析
人工智能·安全·语言模型·自然语言处理·前端框架