线性代数的学习和整理13: 函数与向量/矩阵

目录

[1 函数与 向量/矩阵](#1 函数与 向量/矩阵)

[2 函数的定义域,值域,到达域](#2 函数的定义域,值域,到达域)

[3 对应关系](#3 对应关系)


1 函数与 向量/矩阵

下面两者形式类似,本质也类似

  • 函数的: ax=y ,常规函数里,a,x,y 一般都是单个数
  • 矩阵: AX=Y , 矩阵乘法,这里 A,x,y 一般都是向量/矩阵
  • 线性代数,就是处理数组,和数组的数组的学科

2 函数的定义域,值域,到达域

2.1 函数的定义域,值域,到达域

加入有函数,形如 ax=y=f(x),那么

  • 定义域: 自变量x的取值范围就是定义域
  • 值域: 因变量f(x)=y 的取值范围就是值域
  • 到达域:因变量

2.2 映射:定义域 →映射→ 值域

  • 从映射的角度来看,定义域,值域
  1. 函数定义域里的每个值x,必须有一个值y与之对应
  2. 函数值域里的每个值y,必须有一个定义域的x与之对应

2.3 函数的定义

  • y=f(x)=ax
  • 这个函数,需要每个x都有y值

3 对应关系

针对定义域的

3.1 非函数映射:

(第1种)非函数映射: 定义域里的有的x 没有y对应着

3.2 针对定义域的

  • 单射: 定义域里的每个x 都有唯一的y对应。(但是有的y可能没有x对应)
  1. 普通单射
  2. 双射
  • 非单射: 定义域里的每个x 都有y对应,但是可能对应相同的y

3.3 针对值域的

  • 满射: 值域里的每个y 都有x对应 (但是有的y可能对应的2个x)
  • 非满射: 值域里不是每个y 都有x对应,有些y值没有x映射

特例

  • 双射:定义域中的x 和值域中y 分别一一对应
  • 双射的意义,只有满秩的双射矩阵,一定可逆矩阵

partial function和total function

映射,或者射影,在数学及相关的领域还用于定义函数。函数是从非空数集到非空数集的映射,而且只能是一对一映射或多对一映射。【一个x只能对应一个y,但多个x可以对应一个y】

partial function,对于X中的值,可以有x1在Y中找不到相应的映射。

total function,X中所有的值,xi在Y中都能找到相应的映射。

injective,单射。指将不同的变量映射到不同的值的函数。例如,指数函数exp:R → R+:x → e^x(e的x次方)是单射的。自然对数函数ln:(0,+∞) → R:x → ln x也是单射的。

onto,满射。指陪域等于值域的函数。即:对陪域中任意元素,都存在至少一个定义域中的元素与之对应。

4 函数和反函数 → 矩阵和逆矩阵

4.1 函数和反函数

如果一个函数 y=f(x)=ax 反过来 x=f(y)

  • 如果x和y调换
  • 如果不是满射,反过来就不是单射
  • 函数就不存在反函数

4.2 矩阵和逆矩阵

相关推荐
阿民不加班4 分钟前
【React】打卡笔记,入门学习01:点击事件
笔记·学习·react.js
小苏兮24 分钟前
【数据结构】二叉搜索树
开发语言·数据结构·c++·学习·1024程序员节
hrrrrb28 分钟前
【机器学习】监督学习
人工智能·学习·机器学习
做一道光28 分钟前
2、SVPWM原理及实现学习笔记
笔记·学习·嵌入式·电机控制
繁花与尘埃1 小时前
CSS简介(本文为个人学习笔记,内容整理自哔哩哔哩UP主【非学者勿扰】的公开课程。 > 所有知识点归属原作者,仅作非商业用途分享)
css·笔记·学习
光影少年1 小时前
前端线上出现白屏如何排查问题所在,利用第三方的工具都有哪些
前端·学习·web安全·前端框架
笨鸟笃行2 小时前
百日挑战-单词篇(第五天)
学习
vvvdg3 小时前
求下列线性变换的矩阵
线性代数·矩阵·1024程序员节
数智顾问3 小时前
矩阵的奇异值分解(SVD)在三维图形学中的进阶应用
矩阵
九年义务漏网鲨鱼4 小时前
从零学习 Agentic RL(四)—— 超越 ReAct 的线性束缚:深入解析 Tree-of-Thoughts (ToT)
前端·学习·react.js