数据分析基础-数据可视化01-数据类型

名义数据

名义数据是一种数据类型,用于标识不同的类别、群组或种类,但这些类别之间没有任何特定的顺序或等级关系。名义数据只表示不同的分类,而不提供关于类别之间差异的信息。因此,名义数据的测量单位通常是标签或名称,而不是数值。

名义数据充当标签和名称,这些数据的顺序并不重要 - 例如人名、项目、地点等。

序数数据

序数数据是一种数据类型,用于表示不同类别之间的顺序和等级关系。与名义数据不同,序数数据具有一定的排序,但它们之间的差异通常没有实际的数值含义。序数数据可以被排列为"较大"或"较小",但不能精确地测量其差异大小。
序数数据也是分类数据,例如名义数据,但是顺序很重要。 李克特量表就是一个很好的例子:非常快乐 > 快乐 > 中性 > 不快乐 > 非常不快乐。

区间数据

区间数据是一种数值数据类型,它具有数值属性并且允许进行加法和减法运算,但在这种数据类型中,零点(原点)是任意的,没有实际的数值含义。区间数据表示了数据点之间的差异,但这些差异并不具有绝对的比率关系。
区间数据是不存在绝对零的数值数据。 这种数据类型的零有一定的意义。 一个很好的例子是摄氏度温度,其中 0°C 是一个有意义的值。 这并不意味着没有温度;而是意味着没有温度。 相反,存在温度,并且其值为零。

序数数据和区间数据之间的主要区别

序数数据和区间数据之间的主要区别在于后者数据类型的范围差异是固定的。 70°C 和 100°C 之间的差异为 30°C,这与 -10°C 和 -40°C 之间的差异相同。 另一方面,您不能得出"非常快乐"和"快乐"之间的差异与"快乐"和"中性"之间的差异完全相同的结论。

比率数据

比率数据是一种数值数据类型,与区间数据相似,它具有数值属性,并允许进行加法、减法、乘法和除法运算。与区间数据不同的是,比率数据具有真正的零点,这意味着零表示"没有数量"。在比率数据中,可以根据数值的比例来进行精确的比较和推断。
比率数据也是数值数据。 您可以对此数据类型执行乘法或除法,例如高度。 你可以说 A 楼的高度是 B 楼的两倍,由此得出数据的字面比。

区分比率数据和区间数据的主要区别

区分比率数据和区间数据的主要特征是比率中存在真正的零。 高度为零单位意味着没有高度。

相关推荐
Elastic 中国社区官方博客5 小时前
使用 Discord 和 Elastic Agent Builder A2A 构建游戏社区支持机器人
人工智能·elasticsearch·游戏·搜索引擎·ai·机器人·全文检索
2501_933329555 小时前
企业级AI舆情中台架构实践:Infoseek系统如何实现亿级数据实时监测与智能处置?
人工智能·架构
阿杰学AI5 小时前
AI核心知识70——大语言模型之Context Engineering(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·数据处理·上下文工程
赛博鲁迅5 小时前
物理AI元年:AI走出屏幕进入现实,88API为机器人装上“最强大脑“
人工智能·机器人
管牛牛6 小时前
图像的卷积操作
人工智能·深度学习·计算机视觉
云卓SKYDROID6 小时前
无人机航线辅助模块技术解析
人工智能·无人机·高科技·云卓科技
琅琊榜首20207 小时前
AI生成脑洞付费短篇小说:从灵感触发到内容落地
大数据·人工智能
imbackneverdie7 小时前
近年来,我一直在用的科研工具
人工智能·自然语言处理·aigc·论文·ai写作·学术·ai工具
TTBIGDATA7 小时前
【knox】User: knox is not allowed to impersonate admin
大数据·运维·ambari·hdp·trino·knox·bigtop