《机器学习核心技术》分类算法 - 决策树

「作者主页」:士别三日wyx
「作者简介」:CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者
「推荐专栏」:小白零基础《Python入门到精通》

决策树

决策树是一种 「二叉树形式」的预测模型,每个 「节点」对应一个 「判断条件」, 「满足」上一个条件才能 「进入下一个」判断条件。

就比如找对象,第一个条件肯定是长得帅,长得帅的才考虑下一个条件;长得不帅就直接pass,不往下考虑了。

决策树的「核心」在于:如何找到「最高效」的「决策顺序」。

1、决策树API

sklearn.tree.DecisionTreeClassifier() 是决策树分类算法的API

参数

  • criterion:(可选)衡量分裂的质量,可选值有ginientropylog_loss,默认值 gini
  • splitter:(可选)给每个节点选择分割的策略,可选值有bestrandom,默认值 best
  • max_depth:(可选)树的最大深度,默认值 None
  • min_samples_split:(可选)分割节点所需要的的最小样本数,默认值 2
  • min_samples_leaf:(可选)叶节点上所需要的的最小样本数,默认值 1
  • min_weight_fraction_leaf:(可选)叶节点的权重总和的最小加权分数,默认值 0.0
  • max_features:(可选)寻找最佳分割时要考虑的特征数量,默认值 None
  • random_state:(可选)控制分裂特征的随机数,默认值 None
  • max_leaf_nodes:(可选)最大叶子节点数,默认值 None
  • min_impurity_decrease:(可选)如果分裂指标的减少量大于该值,就进行分裂,默认值 0.0
  • class_weight:(可选)每个类的权重,默认值 None
  • ccp_alpha:(可选)将选择成本复杂度最大且小于ccp_alpha的子树。默认情况下,不执行修剪。

函数

  • fit( x_train, y_train ):接收训练集特征 和 训练集目标
  • predict( x_test ):接收测试集特征,返回数据的类标签。
  • score( x_test, y_test ):接收测试集特征 和 测试集目标,返回准确率。
  • predict_log_proba():预测样本的类对数概率

属性

  • classes_:类标签
  • feature_importances_:特征的重要性
  • max_features_:最大特征推断值
  • n_classes_:类的数量
  • n_features_in_:特征数
  • feature_names_in_:特征名称
  • n_outputs_:输出的数量
  • tree_:底层的tree对象

2、决策时实际应用

2.1、获取数据集

这里使用sklearn自带的鸢尾花数据集进行演示。

python 复制代码
from sklearn import datasets

# 1、获取数据集
iris = datasets.load_iris()

2.2、划分数据集

传入数据集的特征值和目标值,按照默认的比例划分数据集。

python 复制代码
from sklearn import datasets
from sklearn import model_selection

# 1、获取数据集
iris = datasets.load_iris()
# # 2、划分数据集
x_train, x_test, y_train, y_test = model_selection.train_test_split(iris.data, iris.target)

2.3、决策树处理

实例化对象,传入训练集特征值和目标值,开始训练。

python 复制代码
from sklearn import datasets
from sklearn import model_selection
from sklearn import tree

# 1、获取数据集
iris = datasets.load_iris()
# # 2、划分数据集
x_train, x_test, y_train, y_test = model_selection.train_test_split(iris.data, iris.target)
# # 3、决策树处理
estimator = tree.DecisionTreeClassifier()
estimator.fit(x_train, y_train)

2.4、模型评估

对比测试集,验证准确率。

python 复制代码
from sklearn import datasets
from sklearn import model_selection
from sklearn import tree

# 1、获取数据集
iris = datasets.load_iris()
# # 2、划分数据集
x_train, x_test, y_train, y_test = model_selection.train_test_split(iris.data, iris.target)
# # 3、决策树处理
estimator = tree.DecisionTreeClassifier()
estimator.fit(x_train, y_train)
# # 4、模型评估
y_predict = estimator.predict(x_test)
print('对比真实值和预测值', y_test == y_predict)
score = estimator.score(x_test, y_test)
print('准确率:', score)

输出:

bash 复制代码
对比真实值和预测值 [ True  True  True  True  True False  True  True  True  True  True  True
 False  True  True  True  True  True  True  True  True  True  True  True
  True  True  True  True  True  True  True  True  True  True  True  True
  True  True]
准确率: 0.9473684210526315

从结果可以看到,准确率达到了94%

相关推荐
追求源于热爱!7 小时前
记5(一元逻辑回归+线性分类器+多元逻辑回归
算法·机器学习·逻辑回归
爱喝奶茶的企鹅9 小时前
构建一个研发助手Agent:提升开发效率的实践
机器学习
山晨啊89 小时前
2025年美赛B题-结合Logistic阻滞增长模型和SIR传染病模型研究旅游可持续性-成品论文
人工智能·机器学习
程序猿阿伟12 小时前
《解锁AI黑科技:数据分类聚类与可视化》
人工智能·科技·分类
BugNest13 小时前
计算机视觉和图像处理
图像处理·人工智能·机器学习·计算机视觉·ai
IT古董14 小时前
【漫话机器学习系列】066.贪心算法(Greedy Algorithms)
人工智能·机器学习·贪心算法
加德霍克16 小时前
【机器学习】自定义数据集 使用scikit-learn中svm的包实现svm分类
python·机器学习·支持向量机·scikit-learn·作业
知识鱼丸17 小时前
自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
算法·机器学习·逻辑回归
汤姆和佩琦20 小时前
2025-1-26-sklearn学习(46) 无监督学习: 寻求数据表示 空伫立,尽日阑干倚遍,昼长人静。
学习·机器学习·sklearn
加德霍克20 小时前
【机器学习】自定义数据集,使用scikit-learn 中K均值包 进行聚类
python·机器学习·均值算法·scikit-learn·作业