时序预测 | MATLAB实现DBN-SVM深度置信网络结合支持向量机时间序列预测(多指标评价)

时序预测 | MATLAB实现DBN-SVM深度置信网络结合支持向量机时间序列预测(多指标评价)

目录

    • [时序预测 | MATLAB实现DBN-SVM深度置信网络结合支持向量机时间序列预测(多指标评价)](#时序预测 | MATLAB实现DBN-SVM深度置信网络结合支持向量机时间序列预测(多指标评价))

效果一览


基本描述

MATLAB实现DBN-SVM深度置信网络结合支持向量机时间序列预测(多指标评价)

DBN是一种多层神经网络,可以通过逐层训练来提取时间序列数据的特征。用DBN模型提取时间序列数据的特征。使用支持向量机工具箱中的函数构建SVM模型。支持向量机是一种监督学习算法,可以用于分类和回归任务。使用MATLAB的支持向量机工具箱中的函数来构建SVM模型。使用SVM模型进行时间序列预测。将DBN提取的特征作为输入,使用SVM模型进行时间序列的预测。

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现DBN-SVM深度置信网络结合支持向量机时间序列预测(多指标评价)
clike 复制代码
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  导入数据(时间序列的单列数据)
result = xlsread('data.xlsx');
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

%%  绘图
figure
plot(1: M, T_train, 'y-', 1: M, T_sim1, 'b-', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
grid
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
figure
plot(1: N, T_test, 'm-', 1: N, T_sim2, 'g-', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比';['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%  MBE
mbe1 = sum(T_sim1' - T_train) ./ M ;
mbe2 = sum(T_sim2' - T_test ) ./ N ;
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161

[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关推荐
孤独且没人爱的纸鹤20 小时前
【机器学习】深入无监督学习分裂型层次聚类的原理、算法结构与数学基础全方位解读,深度揭示其如何在数据空间中构建层次化聚类结构
人工智能·python·深度学习·机器学习·支持向量机·ai·聚类
ALISHENGYA2 天前
用Python实现SVM搭建金融反诈模型(含调试运行)
算法·机器学习·支持向量机·svm
阡之尘埃4 天前
Python数据分析案例70——基于神经网络的时间序列预测(滞后性的效果,预测中存在的问题)
python·神经网络·数据分析·数据可视化·循环神经网络·时间序列预测
KeyPan5 天前
【机器学习:三十三(一)、支持向量机】
人工智能·神经网络·算法·机器学习·支持向量机·数据挖掘·迁移学习
yuanbenshidiaos5 天前
【大数据】机器学习------支持向量机(SVM)
大数据·机器学习·支持向量机
笔写落去5 天前
统计学习方法(第二版) 第七章 支持向量机 (第三节)
人工智能·算法·机器学习·支持向量机
浊酒南街6 天前
SVM模型(理论知识2)
人工智能·机器学习·支持向量机
KeyPan6 天前
【机器学习:三十三(二)、支持向量机(SVM)的核函数:概念、类型与应用】
人工智能·神经网络·算法·机器学习·支持向量机·数据挖掘
笔写落去7 天前
统计学习方法(第二版) 第七章 支持向量机(第二节)
人工智能·算法·机器学习·支持向量机
笔写落去7 天前
统计学习方法(第二版) 第七章 支持向量机 (第四节)
算法·机器学习·支持向量机