【使用 k 折叠交叉验证的卷积神经网络(CNN)】基于卷积神经网络的无特征EMG模式识别研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

****🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️**座右铭:**行百里者,半于九十。

📋📋📋++本文目录如下:++🎁🎁🎁

目录

[💥1 概述](#💥1 概述)

[📚2 运行结果](#📚2 运行结果)

[🎉3 参考文献](#🎉3 参考文献)

[🌈4 Matlab代码实现](#🌈4 Matlab代码实现)


💥1 概述

文献来源:

特征提取是从肌电信号中提取有用和有价值的信息的重要步骤。然而,特征提取的过程需要先前的知识和专业知识。本文提出了一种无特征EMG模式识别技术,以解决特征提取问题。首先,使用谱图将原始EMG信号转换为时频表示(TFR)。然后,将TFR或谱图图像直接输入卷积神经网络(CNN)进行分类。提出了两种CNN模型,可以从谱图图像中自动学习特征,无需手动特征提取。使用公开获取的NinaPro数据库中获取的EMG数据对所提出的CNN模型进行评估。我们的结果表明,CNN分类器可以为手部和腕部运动的识别提供最佳的平均分类准确率为88.04%。

原文摘要:

摘要:

Feature extraction is important step to extract the useful and valuable information from the electromyography (EMG) signal. However, the process of feature extraction requires prior knowledge and expertise. In this paper, a featureless EMG pattern recognition technique is proposed to tackle the feature extraction problem. Initially, spectrogram is employed to transform the raw EMG signal into time-frequency representation (TFR). The TFRs or spectrogram images are then directly fed into the convolutional neural network (CNN) for classification. Two CNN models are proposed to learn the features automatically from the spectrogram images without the need of manual feature extraction. The proposed CNN models are evaluated using the EMG data acquired from the publicly access NinaPro database. Our results show that CNN classifier can offer the best mean classification accuracy of 88.04% for the recognition of the hand and wrist movements.

📚 2 运行结果

部分代码:

%---Input--------------------------------------------------------------

% imgs : feature vector (height x width x channel x instances)

% label : label vector (instances x 1)

% kfold : Number of cross-validation

% LR : Learning rate

% nB : Number of mini batch

% MaxEpochs : Maximum number of Epochs

% FC : Number of fully connect layer (number of classes)

% nC : Number of convolutional layer (up to 3)

% nF1 : Number of filter in first convolutional layer

% sF1 : Size of filter in first convolutional layer

% nF2 : Number of filter in second convolutional layer

% sF2 : Size of filter in second convolutional layer

% nF3 : Number of filter in third convolutional layer

% sF3 : Size of filter in third convolutional layer

%---Output-------------------------------------------------------------

% A struct that contains three results as follows:

% acc : Overall accuracy

% con : Confusion matrix

% t : computational time (s)

%-----------------------------------------------------------------------

%% (1) Convolutional Neural Network with one convolutional layer

clc, clear

% Benchmark dataset

imgs,label\] = digitTrain4DArrayData; % Parameter setting opts.kfold = 5; opts.LR = 0.01; opts.nB = 100; opts.MaxEpochs = 20; opts.nC = 1; opts.FC = 10; opts.nF1 = 16; opts.sF1 = \[3, 3\]; % Convolutional Neural Network CNN = jCNN(imgs,label,opts); % Accuracy accuray = CNN.acc; % Confusion matrix confmat = CNN.con; %% (2) Convolutional Neural Network with two convolutional layers clc, clear % Benchmark dataset \[imgs,label\] = digitTrain4DArrayData; ## ****🎉3**** ****参考文献**** > 文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。 \[1\]Too, Jingwei, et al. "Featureless EMG Pattern Recognition Based on Convolutional Neural Network." Indonesian Journal of Electrical Engineering and Computer Science, vol. 14, no. 3, Institute of Advanced Engineering and Science, June 2019, p. 1291, doi:10.11591/ijeecs.v14.i3.pp1291-1297. ## [🌈](https://mp.weixin.qq.com/mp/appmsgalbum?__biz=Mzk0MDMzNzYwOA==&action=getalbum&album_id=2591810113208958977#wechat_redirect "🌈")****4 Matlab代码实现****

相关推荐
qwerasda123852几秒前
基于改进的SABL Cascade RNN的安全装备检测系统:手套护目镜安全帽防护服安全鞋识别与实现_r101_fpn_1x_coco_1
人工智能·rnn·安全
实战项目1 分钟前
基于PyTorchMobile的语音识别模型部署与调优
人工智能·语音识别
AI即插即用1 分钟前
超分辨率重建 | 2025 FIWHN:轻量级超分辨率 SOTA!基于“宽残差”与 Transformer 混合架构的高效网络(代码实践)
图像处理·人工智能·深度学习·计算机视觉·transformer·超分辨率重建
小北方城市网2 分钟前
数据库性能优化实战指南:从索引到架构,根治性能瓶颈
数据结构·数据库·人工智能·性能优化·架构·哈希算法·散列表
万行2 分钟前
机器人系统ros2&期末速通&1
人工智能·python·机器学习·机器人
轻竹办公PPT3 分钟前
AI 生成 2026 年工作计划 PPT,逻辑清晰度对比测试
人工智能·python·powerpoint
装不满的克莱因瓶3 分钟前
【cursor】前后端分离项目下的AI跨工程管理方案
java·人工智能·ai·ai编程·cursor·trae·qoder
~央千澈~4 分钟前
从阅文招聘JD看网文平台算法化-网文平台拥抱科技·卓伊凡
大数据·人工智能
房产中介行业研习社5 分钟前
2026年1月房产中介管理系统哪家好用
大数据·人工智能
这张生成的图像能检测吗5 分钟前
(论文速读)Set Transformer: 一种基于注意的置换不变神经网络框架
人工智能·深度学习·神经网络·计算机视觉·transformer