【使用 k 折叠交叉验证的卷积神经网络(CNN)】基于卷积神经网络的无特征EMG模式识别研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

****🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️**座右铭:**行百里者,半于九十。

📋📋📋++本文目录如下:++🎁🎁🎁

目录

[💥1 概述](#💥1 概述)

[📚2 运行结果](#📚2 运行结果)

[🎉3 参考文献](#🎉3 参考文献)

[🌈4 Matlab代码实现](#🌈4 Matlab代码实现)


💥1 概述

文献来源:

特征提取是从肌电信号中提取有用和有价值的信息的重要步骤。然而,特征提取的过程需要先前的知识和专业知识。本文提出了一种无特征EMG模式识别技术,以解决特征提取问题。首先,使用谱图将原始EMG信号转换为时频表示(TFR)。然后,将TFR或谱图图像直接输入卷积神经网络(CNN)进行分类。提出了两种CNN模型,可以从谱图图像中自动学习特征,无需手动特征提取。使用公开获取的NinaPro数据库中获取的EMG数据对所提出的CNN模型进行评估。我们的结果表明,CNN分类器可以为手部和腕部运动的识别提供最佳的平均分类准确率为88.04%。

原文摘要:

摘要:

Feature extraction is important step to extract the useful and valuable information from the electromyography (EMG) signal. However, the process of feature extraction requires prior knowledge and expertise. In this paper, a featureless EMG pattern recognition technique is proposed to tackle the feature extraction problem. Initially, spectrogram is employed to transform the raw EMG signal into time-frequency representation (TFR). The TFRs or spectrogram images are then directly fed into the convolutional neural network (CNN) for classification. Two CNN models are proposed to learn the features automatically from the spectrogram images without the need of manual feature extraction. The proposed CNN models are evaluated using the EMG data acquired from the publicly access NinaPro database. Our results show that CNN classifier can offer the best mean classification accuracy of 88.04% for the recognition of the hand and wrist movements.

📚 2 运行结果

部分代码:

%---Input--------------------------------------------------------------

% imgs : feature vector (height x width x channel x instances)

% label : label vector (instances x 1)

% kfold : Number of cross-validation

% LR : Learning rate

% nB : Number of mini batch

% MaxEpochs : Maximum number of Epochs

% FC : Number of fully connect layer (number of classes)

% nC : Number of convolutional layer (up to 3)

% nF1 : Number of filter in first convolutional layer

% sF1 : Size of filter in first convolutional layer

% nF2 : Number of filter in second convolutional layer

% sF2 : Size of filter in second convolutional layer

% nF3 : Number of filter in third convolutional layer

% sF3 : Size of filter in third convolutional layer

%---Output-------------------------------------------------------------

% A struct that contains three results as follows:

% acc : Overall accuracy

% con : Confusion matrix

% t : computational time (s)

%-----------------------------------------------------------------------

%% (1) Convolutional Neural Network with one convolutional layer

clc, clear

% Benchmark dataset

imgs,label\] = digitTrain4DArrayData; % Parameter setting opts.kfold = 5; opts.LR = 0.01; opts.nB = 100; opts.MaxEpochs = 20; opts.nC = 1; opts.FC = 10; opts.nF1 = 16; opts.sF1 = \[3, 3\]; % Convolutional Neural Network CNN = jCNN(imgs,label,opts); % Accuracy accuray = CNN.acc; % Confusion matrix confmat = CNN.con; %% (2) Convolutional Neural Network with two convolutional layers clc, clear % Benchmark dataset \[imgs,label\] = digitTrain4DArrayData; ## ****🎉3**** ****参考文献**** > 文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。 \[1\]Too, Jingwei, et al. "Featureless EMG Pattern Recognition Based on Convolutional Neural Network." Indonesian Journal of Electrical Engineering and Computer Science, vol. 14, no. 3, Institute of Advanced Engineering and Science, June 2019, p. 1291, doi:10.11591/ijeecs.v14.i3.pp1291-1297. ## [🌈](https://mp.weixin.qq.com/mp/appmsgalbum?__biz=Mzk0MDMzNzYwOA==&action=getalbum&album_id=2591810113208958977#wechat_redirect "🌈")****4 Matlab代码实现****

相关推荐
LiFileHub2 分钟前
神经网络全栈指南:从经典架构到NL范式落地(附12套工程化模板)
人工智能
AI_56788 分钟前
智慧交通:基于边缘计算的信号灯智能调度系统
人工智能·边缘计算
min18112345612 分钟前
因果推理在机器学习中的集成路径
人工智能
小鸡吃米…17 分钟前
机器学习——生态系统
人工智能·机器学习
机器学习之心24 分钟前
MATLAB基于BP神经网络-多模态多目标优化的喷墨打印纳米银导线工艺参数优化
神经网络·matlab·工艺参数优化
说私域25 分钟前
基于开源AI大模型、AI智能名片与商城小程序的购物中心“人货场车”全面数字化解决方案研究
人工智能·小程序·开源
丝斯201125 分钟前
AI学习笔记整理(38)——自然语言处理的‌基于深度学习的语言模型
人工智能·学习·自然语言处理
小毅&Nora27 分钟前
【人工智能】【大模型】大语言模型最新进展:2025年技术演进与实用指南
人工智能·语言模型·自然语言处理
Codebee28 分钟前
惊了!ooder-org藏提示词彩蛋|AI驱动工程典范,1小时焕新DSM全靠A2UI
人工智能·编程语言·全栈
Coder_Boy_31 分钟前
基于SpringAI的智能平台基座开发-(二)
java·人工智能·springboot·aiops·langchain4j