时序预测 | MATLAB实现Attention-GRU时间序列预测(注意力机制融合门控循环单元,TPA-GRU)

时序预测 | MATLAB实现Attention-GRU时间序列预测----注意力机制融合门控循环单元,即TPA-GRU,时间注意力机制结合门控循环单元

目录

    • [时序预测 | MATLAB实现Attention-GRU时间序列预测----注意力机制融合门控循环单元,即TPA-GRU,时间注意力机制结合门控循环单元](#时序预测 | MATLAB实现Attention-GRU时间序列预测----注意力机制融合门控循环单元,即TPA-GRU,时间注意力机制结合门控循环单元)

效果一览





基本介绍

Matlab实现Attention-GRU时间序列预测(注意力机制融合门控循环单元,也可称呼TPA-GRU,时间注意力机制结合门控循环单元),将注意力机制( attention mechanism) 引入GRU( gated recurrent unit) 模型之中,最后,将特征数据集划分为训练集、验证集和测试集,训练集用于训练模型,确定最优模型参数,验证集和测试集用于对模型效果进行评估。

模型结构

相较于LSTM,GRU网络比较大的改动在于:

(1)GRU网络将单元状态与输出合并为隐藏状态,依靠隐藏状态来传输信息。

(2) GRU网络将LSTM 中的遗忘门和输入门整合成为了一个更新门限。正是由于这两个创新点的引入,使得GRU 模型较LSTM 模型具有如下优点: 参数量减少了三分之一,不容易发生过拟合的现象,在一些情况下可以省略dropout 环节; 在训练数据很大的时候可以有效减少运算时间,加速迭代过程,提升运算效率; 从计算角度看,其可扩展性有利于构筑较大的模型。同时,GRU继承了LSTM 处理梯度问题的能力,其门结构可以有效过滤掉无用信息,捕捉输入数据的长期依赖关系,在处理序列问题上具有非常出色的表现。
注意力机制是深度学习中的一种仿生机制,它的提出是由人类观察环境的习惯规律所总结而来的,人类在观察环境时,大脑往往只关注某几个特别重要的局部,获取需要的信息,构建出关于环境的描述,而注意力机制正是如此,其本质就是对关注部分给予较高权重,从而获取更有效的信息,从数学意义上来说,它可以理解为是一种加权求和。注意力机制的主要作用包括:

( 1) 对输入序列的不同局部,赋予不同的权重。

( 2) 对于不同的输出序列局部,给输入局部不一样赋权规划。


程序设计

  • 完整程序和数据下载:私信博主回复MATLAB实现Attention-GRU时间序列预测
clike 复制代码
%%  注意力参数
Attentionweight = params.attention.weight;  % 计算得分权重
Ht = GRU_Y(:, :, end);                      % 参考向量
num_time = size(GRU_Y, 3);                  % 时间尺度

%%  注意力得分
socre = dlarray;
for i = 1: num_time - 1
    A = extractdata(squeeze(GRU_Y(:, :, i)));
    A = repmat(A, [1, 1, num_hidden]);
    A = permute(A, [1, 3, 2]);
    A = dlarray(A, 'SCB');
    B = squeeze(sum(A .* dlarray(Attentionweight, 'SC'), 1));
    C = squeeze(sum(B .* Ht, 1));
    socre = [socre; C];
end
%%  注意力得分
a = sigmoid(socre);
Vt = 0;
for i = 1: num_time - 1
    Vt = Vt + a(i, :) .* GRU_Y(:, :, i);
end
%%  注意力机制
bias1 = params.attenout.bias1;
bias2 = params.attenout.bias2;
weight1 = params.attenout.weight1;
weight2 = params.attenout.weight2;
HVT = fullyconnect(Vt, weight1, bias1) + fullyconnect(Ht, weight2, bias2);
%%  全连接层
LastBias = params.fullyconnect.bias1;
LastWeight = params.fullyconnect.weight1;
%%  注意力参数初始化
params.attention.weight = gpuArray(dlarray(0.01 * randn(num_hidden, num_hidden)));
%%  注意力权重初始化
params.attenout.weight1 = gpuArray(dlarray(0.01 * randn(num_hidden, num_hidden)));
params.attenout.weight2 = gpuArray(dlarray(0.01 * randn(num_hidden, num_hidden)));

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127944569?spm=1001.2014.3001.5502

[2] https://blog.csdn.net/kjm13182345320/article/details/127944537?spm=1001.2014.3001.5502

相关推荐
deephub24 分钟前
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
人工智能·深度学习·transformer·大语言模型·注意力机制
cv小白菜1 天前
多算法模型(BI-LSTM GRU Mamba ekan xgboost)实现功率预测
机器学习·gru·lstm·时间序列·功率预测
迪菲赫尔曼3 天前
即插即用篇 | YOLOv11 引入高效的直方图Transformer模块 | 突破天气障碍:Histoformer引领高效图像修复新路径
人工智能·深度学习·yolo·目标检测·计算机视觉·transformer·注意力机制
zhangfeng11335 天前
tcn 对比 cnn-attension-gru联合模型,时间序列预测,深度神经网络
cnn·gru·dnn
机器学习之心8 天前
时序预测 | 改进图卷积+informer时间序列预测,pytorch架构
人工智能·pytorch·python·时间序列预测·informer·改进图卷积
scdifsn9 天前
动手学深度学习10.1. 注意力提示-笔记&练习(PyTorch)
pytorch·笔记·深度学习·注意力机制·注意力提示
铖铖的花嫁10 天前
基于RNNs(LSTM, GRU)的红点位置检测(pytorch)
pytorch·gru·lstm
不是很强 但是很秃12 天前
秃姐学AI系列之:GRU——门控循环单元 | LSTM——长短期记忆网络
人工智能·rnn·深度学习·神经网络·算法·gru·lstm
机器学习之心12 天前
Transformer-GRU、Transformer、CNN-GRU、GRU、CNN五模型多变量回归预测
多输入单输出回归预测·cnn·gru·transformer·cnn-gru
没有不重的名么15 天前
门控循环单元GRU
人工智能·深度学习·gru