利用逻辑回归判断病人肺部是否发生病变

大家好,我是带我去滑雪!

判断肺部是否发生病变可以及早发现疾病、指导治疗和监测疾病进展,以及预防和促进肺部健康,定期进行肺部评估和检查对于保护肺健康、预防疾病和提高生活质量至关重要。本期将利用相关医学临床数据结合逻辑回归判断病人肺部是否发生病变,其中响应变量为group(1表示肺部发生病变,0表示正常),特征变量为ESR(表示红细胞沉降率)、CRP(表示C-反应蛋白)、ALB(表示白蛋白)、Anti-SSA(表示抗SSA抗体)、Glandular involvement(表示腺体受累)、gender(表示性别)、c-PSA(cancer-specific prostate-specific antigen)、CA 15-3(Cancer Antigen 15-3)、TH17(Th17细胞)、ANA(代表抗核抗体)、CA125(Cancer Antigen 125)、LDH(代表乳酸脱氢酶)。下面开始使用逻辑回归进行肺部病变判断。

(1)导入相关模块与数据

import pandas as pd

import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
from sklearn.metrics import cohen_kappa_score#导入包
import numpy as np
from scipy.stats import logistic
import matplotlib.pyplot as plt
titanic = pd.read_csv('filename1.csv')
titanic#导入数据

输出结果:

| | data.Age | impute.data.ESR..mean. | impute.data.CRP..mean. | impute.data.ALB..mean. | impute.data.Anti.SSA..median. | impute.data.Glandular.involvement..median. | impute.data.Gender..median. | impute.data.c.PSA..mean. | impute.data.CA153..mean. | impute.data.TH17..mean. | impute.data.ANA..median. | impute.data.CA125..mean. | impute.data.LDH..mean. | data.group |
| 0 | 67 | 21.000000 | 4.810000 | 38.692661 | 0 | 0 | 0 | 0.300000 | 3.50000 | 10.330000 | 1 | 3.000000 | 212.210493 | 0 |
| 1 | 78 | 33.000000 | 12.089916 | 41.100000 | 0 | 0 | 0 | 0.610931 | 22.40000 | 7.465353 | 1 | 17.500000 | 485.000000 | 0 |
| 2 | 69 | 24.000000 | 2.250000 | 42.700000 | 0 | 0 | 0 | 0.300000 | 5.40000 | 8.020000 | 0 | 4.360000 | 236.000000 | 0 |
| 3 | 71 | 43.000000 | 21.800000 | 39.200000 | 0 | 0 | 0 | 0.300000 | 11.11000 | 5.500000 | 1 | 6.700000 | 166.000000 | 0 |
| 4 | 69 | 20.000000 | 2.430000 | 47.600000 | 3 | 0 | 0 | 0.300000 | 6.93000 | 4.310000 | 0 | 3.520000 | 223.000000 | 0 |
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| 954 | 63 | 40.274914 | 2.370000 | 40.300000 | 2 | 0 | 0 | 0.430000 | 6.10000 | 6.560000 | 0 | 7.720000 | 234.000000 | 0 |
| 955 | 68 | 27.000000 | 3.520000 | 41.000000 | 3 | 0 | 0 | 0.320000 | 7.52000 | 4.780000 | 1 | 7.150000 | 254.000000 | 0 |
| 956 | 61 | 40.274914 | 12.089916 | 40.700000 | 0 | 0 | 0 | 0.610931 | 12.46303 | 1.790000 | 1 | 9.392344 | 161.000000 | 0 |
| 957 | 60 | 27.000000 | 35.400000 | 38.300000 | 0 | 0 | 0 | 0.200000 | 7.68000 | 5.700000 | 0 | 9.290000 | 256.000000 | 0 |

958 68 30.000000 2.280000 44.400000 0 0 0 0.200000 5.32000 4.430000 0 4.710000 172.000000 0

959 rows × 14 columns

(2)数据处理

X = titanic.iloc[:,:-1]
y = titanic.iloc[:,-1]
X=pd.get_dummies(X,drop_first = True)
X

(3)划分训练集与测试集

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,stratify=None, random_state=0)#划分训练集和测试集

(4)拟合逻辑回归

model = LogisticRegression(C=1e10)
model.fit(X_train, y_train)

model.intercept_ #模型截距
model.coef_ #模型回归系数

输出结果:

复制代码
array([[ 0.03899236,  0.00458312,  0.000863  , -0.10140358, -0.09681747,
         0.74167081,  0.56011254,  0.24636358,  0.0226635 , -0.02681392,
         0.4987412 , -0.01932326,  0.00211805]])

(5)使用逻辑回归测试集进行评价分类准确率

model.score(X_test, y_test)

输出结果:

复制代码
0.6822916666666666

(6)测试集预测所有种类的概率

prob = model.predict_proba(X_test)
prob[:5]

输出结果:

复制代码
array([[0.71336774, 0.28663226],
       [0.34959506, 0.65040494],
       [0.91506198, 0.08493802],
       [0.24008149, 0.75991851],
       [0.55969043, 0.44030957]])

(7)模型预测

pred = model.predict(X_test)
pred[:5]#计算测试集的预测值,展示前五个值

输出结果:

复制代码
array([0, 1, 0, 1, 0], dtype=int64)

(8)计算混淆矩阵

table = pd.crosstab(y_test, pred, rownames=['Actual'], colnames=['Predicted'])
table

输出结果:

| Predicted | 0 | 1 |
| Actual | | |
| 0 | 99 | 22 |

1 39 32

(9)计算基于混淆矩阵诸多评价指标

print(classification_report(y_test, pred, target_names=['yes', 'no']))

输出结果:

复制代码
                precision    recall  f1-score   support

         yes       0.72      0.82      0.76       121
          no       0.59      0.45      0.51        71

    accuracy                           0.68       192
   macro avg       0.65      0.63      0.64       192
weighted avg       0.67      0.68      0.67       192

(10)绘制ROC曲线

from scikitplot.metrics import plot_roc
plot_roc(y_test, prob)
x = np.linspace(0, 1, 100)
plt.plot(x, x, 'k--', linewidth=1)
plt.title('ROC Curve (Test Set)')#画ROC曲线
plt.savefig("E:\工作\硕士\博客\squares1.png",
bbox_inches ="tight",
pad_inches = 1,
transparent = True,
facecolor ="w",
edgecolor ='w',
dpi=300,
orientation ='landscape')

输出结果:

需要数据集的家人们可以去百度网盘(永久有效)获取:

链接:https://pan.baidu.com/s/1E59qYZuGhwlrx6gn4JJZTg?pwd=2138

提取码:2138


更多优质内容持续发布中,请移步主页查看。

点赞+关注,下次不迷路!

相关推荐
BlackPercy5 分钟前
【线性代数】列主元法求矩阵的逆
线性代数·机器学习·矩阵
EQUINOX111 分钟前
3b1b线性代数基础
人工智能·线性代数·机器学习
一只码代码的章鱼16 分钟前
粒子群算法 笔记 数学建模
笔记·算法·数学建模·逻辑回归
小小小小关同学16 分钟前
【JVM】垃圾收集器详解
java·jvm·算法
Swift社区20 分钟前
统计文本文件中单词频率的 Swift 与 Bash 实现详解
vue.js·leetcode·机器学习
圆圆滚滚小企鹅。22 分钟前
刷题笔记 贪心算法-1 贪心算法理论基础
笔记·算法·leetcode·贪心算法
Kacey Huang32 分钟前
YOLOv1、YOLOv2、YOLOv3目标检测算法原理与实战第十三天|YOLOv3实战、安装Typora
人工智能·算法·yolo·目标检测·计算机视觉
加德霍克32 分钟前
【机器学习】使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测
人工智能·python·学习·机器学习·作业
eguid_11 小时前
JavaScript图像处理,常用图像边缘检测算法简单介绍说明
javascript·图像处理·算法·计算机视觉
带多刺的玫瑰1 小时前
Leecode刷题C语言之收集所有金币可获得的最大积分
算法·深度优先