【数学建模竞赛】各类题型及解题方案

评价类赛题建模流程及总结

建模步骤

建立评价指标->评价体系->同向化处理(都越多越好或越少越少)->指标无量纲处理

->权重-> 主客观->合成

主客观评价问题的区别

主客观概念主要是在指标定权 时来划分的。主观评价与客观评价的区别是,主观评价算法在定权时主要以判断者的主观经验为依据 ,而客观评价则主要基于测量数据的基本特性

来综合定权

定权带有一定的主观性,用不同方法确定的权重分配,可能不尽一致,这将导致权重分配的不确定性,最终可能导致评价结果的不确定性。因而在实际工作中,不论用哪种方法确定权重分配,都应当依赖于较为合理的专业解释。

如何选择合适的评价方法

预测类赛题建模流程及总结

预测类赛题的基本解题步骤

预测就是根据过去和现在,估计未来顶测末来。统计预测属于预测方法研究范畴,即如何

利用科学的统计方法对事物的末来发展进行定量推测

基于数学建模的预测方法种类繁多,从经典的单耗法、弹性系数法 、统计分析法,到目前的灰色预测法。当在使用相应的预测方法

建立预测模型时,我们需要知道主要的一些预测方法的研究特点,优缺点和适用范围

预测类问题的区别

预测类问题分为两类:

一类是无法用数学语言刻画其内部演化机理的问题;机理分析->微分方程

另一类是可以通过微分方程刻画其内部规律,这类问题我们称为机理建模问题,通过微分方程建模求解。

如何选择合适的预测方法

在预测类问题的分析中,同样受到预测条件的限制(如数据量的大小、变量之间的关系等)不同的预测方法可能会产生不同的结果,因此需要根据实际情况来选择。

优化类赛题建模流程及总结

优化类赛题的基本解题步骤

优化类问题是从所有可能方案中选择最合理的方案以达到最优目标。在各种科学问题、工程问题 、生产管理、社会经济问题中,人们总是希望在有限的资源条件下,用尽可能小的代价,获得最大的收获(比如保险)。

优化类问题一般的解题步骤为:

1)首先确定决策变量,也就是需要优化的变量;

2)然后确定目标函数,也就是优化的目的;

  1. 最后确定约束条件,决策变量在达到最优状态时,受到那些客观限制。

部分国赛优化类赛题的解决方案

在08年国赛眼科病床的合理安排问题中,

目标函数为医院病床的利用率最高;

决策变量为服务策略:是先到病人先住院、急诊病人先住院还是占用病床时间短的病人先住院等;

约束条件可能包括病人最长等待时间限制、不同症状之间的病人不同房等;
在10年国赛交巡警服务平台的设置与调度问题中,

决策变量为服务平台的位置坐标;

目标函数为交巡警车到达事发地时间最短、交巡警封锁交通要道肘间最短

约束条件可能包括事故发生后交警最晚到达时间,一定区域内服务平台最低数量要求等。

如何选择合适的优化方法

优化类问题中常用的数学模型和求解算法,其中包括线性规划、非线性规划、整数规划、多目标规划等在模型求解中,对于凸优化模型,可以采用基于梯度的求解算法;对于非凸的优化模型,可以采用智能优化算法。

相关推荐
Q741_14719 小时前
C++ 面试高频考点 链表 迭代 递归 力扣 25. K 个一组翻转链表 每日一题 题解
c++·算法·链表·面试·递归·迭代
_fairyland19 小时前
数据结构 力扣 练习
数据结构·考研·算法·leetcode
Neil今天也要学习19 小时前
永磁同步电机无速度算法--基于三阶LESO的反电动势观测器
算法·1024程序员节
机器学习之心20 小时前
NGO-VMD北方苍鹰算法优化变分模态分解+皮尔逊系数+小波阈值降噪+信号重构,MATLAB代码
算法·matlab·重构·信号重构·ngo-vmd·皮尔逊系数·小波阈值降噪
橘颂TA20 小时前
【剑斩OFFER】算法的暴力美学——山脉数组的蜂顶索引
算法·leetcode·职场和发展·c/c++
速易达网络20 小时前
C语言常见推理题
java·c语言·算法
freedom_1024_20 小时前
LRU缓存淘汰算法详解与C++实现
c++·算法·缓存
博语小屋20 小时前
力扣11.盛水最多的容器(medium)
算法·leetcode·职场和发展
Swift社区20 小时前
LeetCode 423 - 从英文中重建数字
算法·leetcode·职场和发展
点云SLAM21 小时前
算法与数据结构之二叉树(Binary Tree)
数据结构·算法·二叉树·深度优先·广度优先·宽度优先