AI 绘画Stable Diffusion 研究(十六)SD Hypernetwork详解

大家好,我是风雨无阻。

本期内容:

  • 什么是 Hypernetwork?
  • Hypernetwork 与其他模型的区别?
  • Hypernetwork 原理
  • Hypernetwork 如何下载安装?
  • Hypernetwork 如何使用?

在上一篇文章中,我们详细介绍了 embedding 的定义、作用以及如何安装使用 ,相信看过的朋友都知道,embedding 是属于一种将提示词打包的模型微调技术。感兴趣的朋友,可以前往查看:AI 绘画Stable Diffusion 研究(十五)SD Embedding详解

其实今天要讲到的 Hypernetwork 和 embedding 甚至和后面我们即将介绍的 Lora 模型一样,也属于一种模型微调技术。

Hypernetwork 其实并不是我们介绍的一个重点知识,我们只需要了解这个微调技术的原理和使用方法即可!

主要有以下原因:

  • Hypernetwork是一个比Lora更早的模型微调技术,现在使用的人数越来越少。

    我们在c站筛选Hypernetwork,只有33个Hypernetwork文件。

  • Hypernetwork使用效果并不理想,甚至还不如体积只有几k的embeddings文件,但是Hypernetwork的文件体积却可以与lora相提并论,在几十M甚至上百M。
  • Hypernetwork可以实现的效果,用其他的替代方式几乎都可以实现,比如用embeddings或者用lora。

1、什么是 Hypernetwork?

Hypernetwork 中文名(超网络),最初由stable diffusion 早期使用者 NovelAI开发,它是一个附加到stable diffusion模型的小型神经网络,用于修改其风格。

2、Hypernetwork 与其他模型的区别

  • Hypernetwork VS Checkpoint(大模型)

Checkpoint模型包含生成图像的所有必要信息,我们可以通过其文件大小来识别,Checkpoint 它们的体积范围从 2 GB 到 7 GB不等,Hypernetwork通常低于 200 MB。

​ Hypernetwork无法单独使用,它需要与checkpoint模型配合来生成图像。

  • Hypernetwork VS LoRA模型

    Hypernetwork与LoRA 模型很相似,它们的文件大小相似,通常低于 200MB,都比checkpoint模型小。

    有一个事实是:LoRA 模型比Hypernetwork模型效果更好。

  • Hypernetwork VS Embeddings

    Embeddings是一种称为Textual Inversion"文本反转"的微调方法,它只是定义新的关键字来实现某些样式。与 HypernetworkEmbeddings一样, 不会改变模型Embeddings和Hypernetwork适用于stable diffusion模型的不同部分。

    Embeddings在文本编码器中创建新的嵌入。

    Hypernetwork将一个小型网络插入噪声预测器的cross-attention模块中。

3、Hypernetwork 的下载安装

​ 这里我们以c站下载Hypernetwork 模型为例进行说明。

第一步,浏览器中打开c站,搜索 Hypernetwork

第二步,选择喜欢的 Hypernetwork模型,下载即可

我们这里以下载这个 Hypernetwork模型演示,如下:

下载完成,得到waterElemental_10.pt 文件

第三步,将这个模型文件拷贝到 \sd-webui-aki-v4.2\models\hypernetworks 目录

\sd-webui-aki-v4.2\models\hypernetworks

重新启动 stable diffusion 使其生效。

4、Hypernetwork 的使用

Hypernetwork的使用方式与Embeddings 类似,区别是 Hypernetwork 用在正向提示词中,而Embeddings 是用在反向提示词中。

我们的按钮使用的 Hypernetwork 模型是:

Water Elemental(水元素)

Water Elemental(水元素)是一个独特的超网络,可以将任何东西变成水!

在主题之前使用短语water elementa"可以将此超网络与Stable Diffusion v1.5结合使用,更改超网络权重以调整水效果。

(1)、设置正向提示词

water elemental woman walking across a busy street 

(2)、选择 Water Elemental Hypernetwork 模型

选择 Water Elemental Hypernetwork 模型后,在正向提示词里面会自动添加:

(3)、设置参数

  • 采样算法:DPM++2M Karras
  • 迭代步数:15
  • CFG Scale: 7

(4)、点击按钮, 效果如下:

好了,今天的内容就分享到这里,后面我们将持续分享有关 Stable Diffusion 的干货,喜欢的朋友请关注我,我们下次再见。

相关推荐
IT古董14 分钟前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类
mahuifa15 分钟前
混合开发环境---使用编程AI辅助开发Qt
人工智能·vscode·qt·qtcreator·编程ai
四口鲸鱼爱吃盐17 分钟前
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
人工智能·pytorch·分类
蓝天星空30 分钟前
Python调用open ai接口
人工智能·python
睡觉狂魔er31 分钟前
自动驾驶控制与规划——Project 3: LQR车辆横向控制
人工智能·机器学习·自动驾驶
scan7241 小时前
LILAC采样算法
人工智能·算法·机器学习
leaf_leaves_leaf1 小时前
win11用一条命令给anaconda环境安装GPU版本pytorch,并检查是否为GPU版本
人工智能·pytorch·python
夜雨飘零11 小时前
基于Pytorch实现的说话人日志(说话人分离)
人工智能·pytorch·python·声纹识别·说话人分离·说话人日志
爱喝热水的呀哈喽1 小时前
《机器学习》支持向量机
人工智能·决策树·机器学习
minstbe1 小时前
AI开发:使用支持向量机(SVM)进行文本情感分析训练 - Python
人工智能·python·支持向量机