sklearn 笔记: neighbors.BallTree

球树结构

1 基本使用方法

python 复制代码
sklearn.neighbors.BallTree(
    X, 
    leaf_size=40, 
    metric='minkowski', 
    **kwargs)

2 主要参数说明

|-----------|--------------------------------------------------------------------------------|
| X | * 输入数据,维度为 (n_samples, n_features) * n_samples 是数据集中点的数量 * n_features 是参数空间的维数 |
| leaf_size | * 点数少于多少时,切换到暴力搜索 * 更改 leaf_size 不会影响查询结果,但可能会显著影响查询速度和构建树所需的内存 |
| metric | 度量距离 |

3 举例

3.1 最近的K个邻居

python 复制代码
import numpy as np
from sklearn.neighbors import BallTree
X = np.random.randn(10,3)
tree = BallTree(X, leaf_size=2)              
dist, ind = tree.query(X[:2], k=3)                

print(ind)  
# 最近的k个邻居的index
'''
[[0 4 5]
 [1 2 8]]
'''

print(dist)  
# 最近的k个邻居的距离
'''
[[0.         0.86677441 1.16406937]
 [0.         0.95190704 1.32997164]]
'''

3.2 位于查询点指定半径内的所有邻居点

  • 查找位于每个查询点半径内的点的索引
python 复制代码
query_radius(
    X, 
    r, 
    return_distance=False, 
    count_only=False, 
    sort_results=False)

|-------------------|------------------------------------------------------|
| X | * 查询点的坐标(n_queries, n_features) |
| r | float 或一维数组,表示查询半径 |
| count_only | bool,默认为 False。 如果为 True,则只返回每个查询点内邻居点的数量,而不返回邻居点的索引 |
| return_distance | bool,默认为 False。如果为 True,则返回每个查询点到其邻居点的距离列表 |

python 复制代码
import numpy as np
from sklearn.neighbors import BallTree
X = np.random.randn(10,3)
tree = BallTree(X, leaf_size=2)              

tree.query_radius(X[:2],r=[0.1,5])
'''
array([array([0], dtype=int64),
       array([6, 2, 4, 7, 8, 1, 0, 3, 9, 5], dtype=int64)], dtype=object)
'''
python 复制代码
import numpy as np
from sklearn.neighbors import BallTree
X = np.random.randn(10,3)
tree = BallTree(X, leaf_size=2)              

tree.query_radius(X[:2],r=[0.1,5],return_distance=True)
'''
(array([array([0], dtype=int64),
        array([8, 2, 3, 6, 1, 9, 7, 0, 5, 4], dtype=int64)], dtype=object),
 array([array([0.]),
        array([2.18948629, 1.05002031, 1.48036256, 1.54854719, 0.        ,
               2.37799982, 3.36371823, 2.63138373, 2.54630893, 3.57322436])],
       dtype=object))
'''
相关推荐
ExRoc32 分钟前
蓝桥杯真题 - 填充 - 题解
c++·算法·蓝桥杯
利刃大大1 小时前
【二叉树的深搜】二叉树剪枝
c++·算法·dfs·剪枝
xiaocao_10232 小时前
手机备忘录:安全存储与管理个人笔记的理想选择
笔记·安全·智能手机
索然无味io2 小时前
XML外部实体注入--漏洞利用
xml·前端·笔记·学习·web安全·网络安全·php
王磊鑫2 小时前
Java入门笔记(1)
java·开发语言·笔记
安冬的码畜日常3 小时前
【Vim Masterclass 笔记22】S09L40 + L41:同步练习11:Vim 的配置与 vimrc 文件的相关操作(含点评课内容)
笔记·vim·vim配置·vim同步练习·vim options·vim option-list
天乐敲代码3 小时前
JAVASE入门九脚-集合框架ArrayList,LinkedList,HashSet,TreeSet,迭代
java·开发语言·算法
十年一梦实验室3 小时前
【Eigen教程】矩阵、数组和向量类(二)
线性代数·算法·矩阵
Kent_J_Truman3 小时前
【子矩阵——优先队列】
算法
追Star仙4 小时前
基于Qt中的QAxObject实现指定表格合并数据进行word表格的合并
开发语言·笔记·qt·word