sklearn 笔记: neighbors.BallTree

球树结构

1 基本使用方法

python 复制代码
sklearn.neighbors.BallTree(
    X, 
    leaf_size=40, 
    metric='minkowski', 
    **kwargs)

2 主要参数说明

|-----------|--------------------------------------------------------------------------------|
| X | * 输入数据,维度为 (n_samples, n_features) * n_samples 是数据集中点的数量 * n_features 是参数空间的维数 |
| leaf_size | * 点数少于多少时,切换到暴力搜索 * 更改 leaf_size 不会影响查询结果,但可能会显著影响查询速度和构建树所需的内存 |
| metric | 度量距离 |

3 举例

3.1 最近的K个邻居

python 复制代码
import numpy as np
from sklearn.neighbors import BallTree
X = np.random.randn(10,3)
tree = BallTree(X, leaf_size=2)              
dist, ind = tree.query(X[:2], k=3)                

print(ind)  
# 最近的k个邻居的index
'''
[[0 4 5]
 [1 2 8]]
'''

print(dist)  
# 最近的k个邻居的距离
'''
[[0.         0.86677441 1.16406937]
 [0.         0.95190704 1.32997164]]
'''

3.2 位于查询点指定半径内的所有邻居点

  • 查找位于每个查询点半径内的点的索引
python 复制代码
query_radius(
    X, 
    r, 
    return_distance=False, 
    count_only=False, 
    sort_results=False)

|-------------------|------------------------------------------------------|
| X | * 查询点的坐标(n_queries, n_features) |
| r | float 或一维数组,表示查询半径 |
| count_only | bool,默认为 False。 如果为 True,则只返回每个查询点内邻居点的数量,而不返回邻居点的索引 |
| return_distance | bool,默认为 False。如果为 True,则返回每个查询点到其邻居点的距离列表 |

python 复制代码
import numpy as np
from sklearn.neighbors import BallTree
X = np.random.randn(10,3)
tree = BallTree(X, leaf_size=2)              

tree.query_radius(X[:2],r=[0.1,5])
'''
array([array([0], dtype=int64),
       array([6, 2, 4, 7, 8, 1, 0, 3, 9, 5], dtype=int64)], dtype=object)
'''
python 复制代码
import numpy as np
from sklearn.neighbors import BallTree
X = np.random.randn(10,3)
tree = BallTree(X, leaf_size=2)              

tree.query_radius(X[:2],r=[0.1,5],return_distance=True)
'''
(array([array([0], dtype=int64),
        array([8, 2, 3, 6, 1, 9, 7, 0, 5, 4], dtype=int64)], dtype=object),
 array([array([0.]),
        array([2.18948629, 1.05002031, 1.48036256, 1.54854719, 0.        ,
               2.37799982, 3.36371823, 2.63138373, 2.54630893, 3.57322436])],
       dtype=object))
'''
相关推荐
CoovallyAIHub1 小时前
中科大DSAI Lab团队多篇论文入选ICCV 2025,推动三维视觉与泛化感知技术突破
深度学习·算法·计算机视觉
NAGNIP2 小时前
Serverless 架构下的大模型框架落地实践
算法·架构
moonlifesudo2 小时前
半开区间和开区间的两个二分模版
算法
moonlifesudo2 小时前
300:最长递增子序列
算法
CoovallyAIHub7 小时前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
使一颗心免于哀伤7 小时前
《设计模式之禅》笔记摘录 - 21.状态模式
笔记·设计模式
CoovallyAIHub8 小时前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉
聚客AI1 天前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
大怪v1 天前
前端:人工智能?我也会啊!来个花活,😎😎😎“自动驾驶”整起!
前端·javascript·算法
惯导马工1 天前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法