自步学习的介绍 self paced learning

这方面的研究专家,参考西安交通大学的
孟德宇老师

他最近的研究方向:

Fundamental problems in machine learning and computer vision, especially including:

Meta-learning

Variational bayesian methods on inverse problems

Robust and interpretable deep learning

1.1 Self-paced curriculum learning

https://ojs.aaai.org/index.php/AAAI/article/view/9608;

课程学习(CL)或自定进度学习(SPL)代表了最近提出的一种学习制度,其灵感来自人类和动物的学习过程,在训练中逐渐从简单到更复杂的样本。这两种方法具有相似的概念学习范式,但具体的学习方案不同。在CL中,课程由先验知识预先确定,此后保持固定。因此,这种方法在很大程度上依赖于先验知识的质量,而忽略了对学习者的反馈。在SPL中,课程是动态确定的,以适应精益者的学习速度。然而,SPL无法处理先验知识,使其容易过度拟合。在本文中,我们发现了CL和SPL之间缺失的联系,并提出了一个名为自定进度课程倾斜(SPCL)的统一框架。SPCL被表述为一个简洁的优化问题,它既考虑了训练前已知的先验知识,也考虑了训练期间的学习进度。与人类教育相比,SPCL类似于"讲师-学生-协作"学习模式,而不是CL中的"讲师驱动"或SPL中的"学生驱动"。根据经验,我们证明了SPCL在两个任务上的优势

1.2 课程学习

参考阅读

http://huangc.top/2021/06/13/Curriculum-Learning-2021/

1.3

2.

2.1

2.2

2.3

3.

3.1

3.2

3.3

课程学习(CL)或自定进度学习(SPL)代表了最近提出的一种学习制度,其灵感来自人类和动物的学习过程,在训练中逐渐从简单到更复杂的样本。这两种方法具有相似的概念学习范式,但具体的学习方案不同。在CL中,课程由先验知识预先确定,此后保持固定。因此,这种方法在很大程度上依赖于先验知识的质量,而忽略了对学习者的反馈。在SPL中,课程是动态确定的,以适应精益者的学习速度。然而,SPL无法处理先验知识,使其容易过度拟合。在本文中,我们发现了CL和SPL之间缺失的联系,并提出了一个名为自定进度课程倾斜(SPCL)的统一框架。SPCL被表述为一个简洁的优化问题,它既考虑了训练前已知的先验知识,也考虑了训练期间的学习进度。与人类教育相比,SPCL类似于"讲师-学生-协作"的学习模式,而不是CL中的"讲师驱动"或SPL中的"学生驱动"。根据经验,我们证明了SPCL在两个任务上的优势

相关推荐
我爱一条柴ya9 分钟前
【AI大模型】神经网络反向传播:核心原理与完整实现
人工智能·深度学习·神经网络·ai·ai编程
万米商云14 分钟前
企业物资集采平台解决方案:跨地域、多仓库、百部门——大型企业如何用一套系统管好百万级物资?
大数据·运维·人工智能
新加坡内哥谈技术17 分钟前
Google AI 刚刚开源 MCP 数据库工具箱,让 AI 代理安全高效地查询数据库
人工智能
慕婉030719 分钟前
深度学习概述
人工智能·深度学习
大模型真好玩20 分钟前
准确率飙升!GraphRAG如何利用知识图谱提升RAG答案质量(额外篇)——大规模文本数据下GraphRAG实战
人工智能·python·mcp
198921 分钟前
【零基础学AI】第30讲:生成对抗网络(GAN)实战 - 手写数字生成
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·近邻算法
6confim21 分钟前
AI原生软件工程师
人工智能·ai编程·cursor
阿里云大数据AI技术21 分钟前
Flink Forward Asia 2025 主旨演讲精彩回顾
大数据·人工智能·flink
i小溪22 分钟前
在使用 Docker 时,如果容器挂载的数据目录(如 `/var/moments`)位于数据盘,只要服务没有读写,数据盘是否就不会被唤醒?
人工智能·docker
程序员NEO25 分钟前
Spring AI 对话记忆大揭秘:服务器重启,聊天记录不再丢失!
人工智能·后端