自步学习的介绍 self paced learning

这方面的研究专家,参考西安交通大学的
孟德宇老师

他最近的研究方向:

Fundamental problems in machine learning and computer vision, especially including:

Meta-learning

Variational bayesian methods on inverse problems

Robust and interpretable deep learning

1.1 Self-paced curriculum learning

https://ojs.aaai.org/index.php/AAAI/article/view/9608;

课程学习(CL)或自定进度学习(SPL)代表了最近提出的一种学习制度,其灵感来自人类和动物的学习过程,在训练中逐渐从简单到更复杂的样本。这两种方法具有相似的概念学习范式,但具体的学习方案不同。在CL中,课程由先验知识预先确定,此后保持固定。因此,这种方法在很大程度上依赖于先验知识的质量,而忽略了对学习者的反馈。在SPL中,课程是动态确定的,以适应精益者的学习速度。然而,SPL无法处理先验知识,使其容易过度拟合。在本文中,我们发现了CL和SPL之间缺失的联系,并提出了一个名为自定进度课程倾斜(SPCL)的统一框架。SPCL被表述为一个简洁的优化问题,它既考虑了训练前已知的先验知识,也考虑了训练期间的学习进度。与人类教育相比,SPCL类似于"讲师-学生-协作"学习模式,而不是CL中的"讲师驱动"或SPL中的"学生驱动"。根据经验,我们证明了SPCL在两个任务上的优势

1.2 课程学习

参考阅读

http://huangc.top/2021/06/13/Curriculum-Learning-2021/

1.3

2.

2.1

2.2

2.3

3.

3.1

3.2

3.3

课程学习(CL)或自定进度学习(SPL)代表了最近提出的一种学习制度,其灵感来自人类和动物的学习过程,在训练中逐渐从简单到更复杂的样本。这两种方法具有相似的概念学习范式,但具体的学习方案不同。在CL中,课程由先验知识预先确定,此后保持固定。因此,这种方法在很大程度上依赖于先验知识的质量,而忽略了对学习者的反馈。在SPL中,课程是动态确定的,以适应精益者的学习速度。然而,SPL无法处理先验知识,使其容易过度拟合。在本文中,我们发现了CL和SPL之间缺失的联系,并提出了一个名为自定进度课程倾斜(SPCL)的统一框架。SPCL被表述为一个简洁的优化问题,它既考虑了训练前已知的先验知识,也考虑了训练期间的学习进度。与人类教育相比,SPCL类似于"讲师-学生-协作"的学习模式,而不是CL中的"讲师驱动"或SPL中的"学生驱动"。根据经验,我们证明了SPCL在两个任务上的优势

相关推荐
sendnews36 分钟前
红松小课首次亮相北京老博会,四大业务矩阵赋能退休生活提质升级
人工智能·物联网
停停的茶1 小时前
深度学习——图像分割
人工智能·深度学习
MIXLLRED2 小时前
自动驾驶技术全景解析:从感知、决策到控制的演进与挑战
人工智能·机器学习·自动驾驶
金融Tech趋势派2 小时前
企业微信AI SCRM推荐:从技术适配与场景功能实践进行评估
大数据·人工智能
Wnq100722 小时前
AI 在法律咨询服务中的革命性变化:技术赋能与生态重构
人工智能·职场和发展·重构·分类·数据分析·全文检索·创业创新
茶杯6752 小时前
极睿iClip易视频:2025年AI混剪领域的革新工具,重构电商内容生产逻辑
人工智能
一点一木2 小时前
🚀 2025 年 10 月 GitHub 十大热门项目排行榜 🔥
前端·人工智能·github
湘-枫叶情缘2 小时前
程序与工业:从附庸到共生,在AI浪潮下的高维重构
人工智能·重构
音视频牛哥2 小时前
狂飙与重构:机器人IPO浪潮背后的系统焦虑与感知进化
人工智能·计算机视觉·机器人·音视频·多智能体协同·rtsp播放器rtmp播放器·视频感知低延迟音视频