自步学习的介绍 self paced learning

这方面的研究专家,参考西安交通大学的
孟德宇老师

他最近的研究方向:

Fundamental problems in machine learning and computer vision, especially including:

Meta-learning

Variational bayesian methods on inverse problems

Robust and interpretable deep learning

1.1 Self-paced curriculum learning

https://ojs.aaai.org/index.php/AAAI/article/view/9608;

课程学习(CL)或自定进度学习(SPL)代表了最近提出的一种学习制度,其灵感来自人类和动物的学习过程,在训练中逐渐从简单到更复杂的样本。这两种方法具有相似的概念学习范式,但具体的学习方案不同。在CL中,课程由先验知识预先确定,此后保持固定。因此,这种方法在很大程度上依赖于先验知识的质量,而忽略了对学习者的反馈。在SPL中,课程是动态确定的,以适应精益者的学习速度。然而,SPL无法处理先验知识,使其容易过度拟合。在本文中,我们发现了CL和SPL之间缺失的联系,并提出了一个名为自定进度课程倾斜(SPCL)的统一框架。SPCL被表述为一个简洁的优化问题,它既考虑了训练前已知的先验知识,也考虑了训练期间的学习进度。与人类教育相比,SPCL类似于"讲师-学生-协作"学习模式,而不是CL中的"讲师驱动"或SPL中的"学生驱动"。根据经验,我们证明了SPCL在两个任务上的优势

1.2 课程学习

参考阅读

http://huangc.top/2021/06/13/Curriculum-Learning-2021/

1.3

2.

2.1

2.2

2.3

3.

3.1

3.2

3.3

课程学习(CL)或自定进度学习(SPL)代表了最近提出的一种学习制度,其灵感来自人类和动物的学习过程,在训练中逐渐从简单到更复杂的样本。这两种方法具有相似的概念学习范式,但具体的学习方案不同。在CL中,课程由先验知识预先确定,此后保持固定。因此,这种方法在很大程度上依赖于先验知识的质量,而忽略了对学习者的反馈。在SPL中,课程是动态确定的,以适应精益者的学习速度。然而,SPL无法处理先验知识,使其容易过度拟合。在本文中,我们发现了CL和SPL之间缺失的联系,并提出了一个名为自定进度课程倾斜(SPCL)的统一框架。SPCL被表述为一个简洁的优化问题,它既考虑了训练前已知的先验知识,也考虑了训练期间的学习进度。与人类教育相比,SPCL类似于"讲师-学生-协作"的学习模式,而不是CL中的"讲师驱动"或SPL中的"学生驱动"。根据经验,我们证明了SPCL在两个任务上的优势

相关推荐
沛沛老爹18 小时前
Web开发者实战:多模态Agent技能开发——语音交互与合成技能集成指南
java·开发语言·前端·人工智能·交互·skills
zch不会敲代码18 小时前
深度学习之图像分类实战(食物分类)
人工智能·深度学习·分类
啊阿狸不会拉杆18 小时前
《数字信号处理》第 2 章 - z 变换与离散时间傅里叶变换(DTFT)
人工智能·算法·机器学习·信号处理·数字信号处理·dsp
hjs_deeplearning18 小时前
认知篇#15:ms-swift微调中gradient_accumulation_steps和warmup_ratio等参数的意义与设置
开发语言·人工智能·机器学习·swift·vlm
民乐团扒谱机18 小时前
【数模美赛=美术大赛?】O奖论文图片复刻——高级绘图matlab代码集锦,让你摆脱画图“一眼MATLAB”的痛苦!
前端·人工智能·matlab
武汉唯众智创18 小时前
全链路·工业级·强联动!物联网智慧城市实训平台,重塑职教实训新生态
人工智能·物联网·智慧城市·物联网实训平台·物联网智慧城市实训平台·智慧城市实训平台
凤希AI伴侣18 小时前
凤希AI伴侣的服饰探索与虚拟现实畅想-2026年1月26日
人工智能·凤希ai伴侣
程途拾光15818 小时前
中文用户常用在线流程图工具PC端高效制作各类业务流程图方法
大数据·论文阅读·人工智能·信息可视化·流程图·课程设计
胖墩会武术18 小时前
【PyTorch项目实战】FastSAM(快速分割一切)
人工智能·pytorch·python
Coding茶水间18 小时前
基于深度学习的无人机检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
人工智能·深度学习·yolo·目标检测·机器学习