自步学习的介绍 self paced learning

这方面的研究专家,参考西安交通大学的
孟德宇老师

他最近的研究方向:

Fundamental problems in machine learning and computer vision, especially including:

Meta-learning

Variational bayesian methods on inverse problems

Robust and interpretable deep learning

1.1 Self-paced curriculum learning

https://ojs.aaai.org/index.php/AAAI/article/view/9608;

课程学习(CL)或自定进度学习(SPL)代表了最近提出的一种学习制度,其灵感来自人类和动物的学习过程,在训练中逐渐从简单到更复杂的样本。这两种方法具有相似的概念学习范式,但具体的学习方案不同。在CL中,课程由先验知识预先确定,此后保持固定。因此,这种方法在很大程度上依赖于先验知识的质量,而忽略了对学习者的反馈。在SPL中,课程是动态确定的,以适应精益者的学习速度。然而,SPL无法处理先验知识,使其容易过度拟合。在本文中,我们发现了CL和SPL之间缺失的联系,并提出了一个名为自定进度课程倾斜(SPCL)的统一框架。SPCL被表述为一个简洁的优化问题,它既考虑了训练前已知的先验知识,也考虑了训练期间的学习进度。与人类教育相比,SPCL类似于"讲师-学生-协作"学习模式,而不是CL中的"讲师驱动"或SPL中的"学生驱动"。根据经验,我们证明了SPCL在两个任务上的优势

1.2 课程学习

参考阅读

http://huangc.top/2021/06/13/Curriculum-Learning-2021/

1.3

2.

2.1

2.2

2.3

3.

3.1

3.2

3.3

课程学习(CL)或自定进度学习(SPL)代表了最近提出的一种学习制度,其灵感来自人类和动物的学习过程,在训练中逐渐从简单到更复杂的样本。这两种方法具有相似的概念学习范式,但具体的学习方案不同。在CL中,课程由先验知识预先确定,此后保持固定。因此,这种方法在很大程度上依赖于先验知识的质量,而忽略了对学习者的反馈。在SPL中,课程是动态确定的,以适应精益者的学习速度。然而,SPL无法处理先验知识,使其容易过度拟合。在本文中,我们发现了CL和SPL之间缺失的联系,并提出了一个名为自定进度课程倾斜(SPCL)的统一框架。SPCL被表述为一个简洁的优化问题,它既考虑了训练前已知的先验知识,也考虑了训练期间的学习进度。与人类教育相比,SPCL类似于"讲师-学生-协作"的学习模式,而不是CL中的"讲师驱动"或SPL中的"学生驱动"。根据经验,我们证明了SPCL在两个任务上的优势

相关推荐
九.九6 小时前
ops-transformer:AI 处理器上的高性能 Transformer 算子库
人工智能·深度学习·transformer
春日见6 小时前
拉取与合并:如何让个人分支既包含你昨天的修改,也包含 develop 最新更新
大数据·人工智能·深度学习·elasticsearch·搜索引擎
恋猫de小郭6 小时前
AI 在提高你工作效率的同时,也一直在增加你的疲惫和焦虑
前端·人工智能·ai编程
deephub6 小时前
Agent Lightning:微软开源的框架无关 Agent 训练方案,LangChain/AutoGen 都能用
人工智能·microsoft·langchain·大语言模型·agent·强化学习
大模型RAG和Agent技术实践6 小时前
从零构建本地AI合同审查系统:架构设计与流式交互实战(完整源代码)
人工智能·交互·智能合同审核
老邋遢6 小时前
第三章-AI知识扫盲看这一篇就够了
人工智能
互联网江湖6 小时前
Seedance2.0炸场:长短视频们“修坝”十年,不如AI放水一天?
人工智能
PythonPioneer7 小时前
在AI技术迅猛发展的今天,传统职业该如何“踏浪前行”?
人工智能
冬奇Lab7 小时前
一天一个开源项目(第20篇):NanoBot - 轻量级AI Agent框架,极简高效的智能体构建工具
人工智能·开源·agent
阿里巴巴淘系技术团队官网博客8 小时前
设计模式Trustworthy Generation:提升RAG信赖度
人工智能·设计模式