自步学习的介绍 self paced learning

这方面的研究专家,参考西安交通大学的
孟德宇老师

他最近的研究方向:

Fundamental problems in machine learning and computer vision, especially including:

Meta-learning

Variational bayesian methods on inverse problems

Robust and interpretable deep learning

1.1 Self-paced curriculum learning

https://ojs.aaai.org/index.php/AAAI/article/view/9608;

课程学习(CL)或自定进度学习(SPL)代表了最近提出的一种学习制度,其灵感来自人类和动物的学习过程,在训练中逐渐从简单到更复杂的样本。这两种方法具有相似的概念学习范式,但具体的学习方案不同。在CL中,课程由先验知识预先确定,此后保持固定。因此,这种方法在很大程度上依赖于先验知识的质量,而忽略了对学习者的反馈。在SPL中,课程是动态确定的,以适应精益者的学习速度。然而,SPL无法处理先验知识,使其容易过度拟合。在本文中,我们发现了CL和SPL之间缺失的联系,并提出了一个名为自定进度课程倾斜(SPCL)的统一框架。SPCL被表述为一个简洁的优化问题,它既考虑了训练前已知的先验知识,也考虑了训练期间的学习进度。与人类教育相比,SPCL类似于"讲师-学生-协作"学习模式,而不是CL中的"讲师驱动"或SPL中的"学生驱动"。根据经验,我们证明了SPCL在两个任务上的优势

1.2 课程学习

参考阅读

http://huangc.top/2021/06/13/Curriculum-Learning-2021/

1.3

2.

2.1

2.2

2.3

3.

3.1

3.2

3.3

课程学习(CL)或自定进度学习(SPL)代表了最近提出的一种学习制度,其灵感来自人类和动物的学习过程,在训练中逐渐从简单到更复杂的样本。这两种方法具有相似的概念学习范式,但具体的学习方案不同。在CL中,课程由先验知识预先确定,此后保持固定。因此,这种方法在很大程度上依赖于先验知识的质量,而忽略了对学习者的反馈。在SPL中,课程是动态确定的,以适应精益者的学习速度。然而,SPL无法处理先验知识,使其容易过度拟合。在本文中,我们发现了CL和SPL之间缺失的联系,并提出了一个名为自定进度课程倾斜(SPCL)的统一框架。SPCL被表述为一个简洁的优化问题,它既考虑了训练前已知的先验知识,也考虑了训练期间的学习进度。与人类教育相比,SPCL类似于"讲师-学生-协作"的学习模式,而不是CL中的"讲师驱动"或SPL中的"学生驱动"。根据经验,我们证明了SPCL在两个任务上的优势

相关推荐
美狐美颜SDK开放平台13 小时前
自研还是接入第三方?直播美颜sdk与滤镜功能的技术选型分析
人工智能·美颜sdk·直播美颜sdk·美颜api·美狐美颜sdk
weixin_4166600713 小时前
插件分享:将AI生成的数学公式无损导出为Word文档
人工智能·ai·word·论文·数学公式·deepseek
PM老周13 小时前
DORA2025:如何用AI提升研发效能(以 ONES MCP Server 为例)
大数据·人工智能
皇族崛起13 小时前
【众包 + AI智能体】AI境生态巡查平台边防借鉴价值专项调研——以广西边境线治理为例
大数据·人工智能
zhaodiandiandian13 小时前
AI大模型:重构产业生态的核心引擎
人工智能·重构
沈浩(种子思维作者)13 小时前
百项可控核聚变实现方式的全息太极矩阵
人工智能
_codemonster13 小时前
自然语言处理容易混淆知识点(二)BERT和BERTopic的区别
人工智能·自然语言处理·bert
JoannaJuanCV13 小时前
自动驾驶—CARLA仿真(9)visualize_multiple_sensors demo
人工智能·自动驾驶·pygame
良策金宝AI13 小时前
全球工程软件格局重塑:中国AI原生平台的机会窗口
大数据·运维·人工智能
小笔学长13 小时前
毕业论文答辩 PPT:从内容到呈现的全流程设计指南
人工智能·powerpoint