自步学习的介绍 self paced learning

这方面的研究专家,参考西安交通大学的
孟德宇老师

他最近的研究方向:

Fundamental problems in machine learning and computer vision, especially including:

Meta-learning

Variational bayesian methods on inverse problems

Robust and interpretable deep learning

1.1 Self-paced curriculum learning

https://ojs.aaai.org/index.php/AAAI/article/view/9608;

课程学习(CL)或自定进度学习(SPL)代表了最近提出的一种学习制度,其灵感来自人类和动物的学习过程,在训练中逐渐从简单到更复杂的样本。这两种方法具有相似的概念学习范式,但具体的学习方案不同。在CL中,课程由先验知识预先确定,此后保持固定。因此,这种方法在很大程度上依赖于先验知识的质量,而忽略了对学习者的反馈。在SPL中,课程是动态确定的,以适应精益者的学习速度。然而,SPL无法处理先验知识,使其容易过度拟合。在本文中,我们发现了CL和SPL之间缺失的联系,并提出了一个名为自定进度课程倾斜(SPCL)的统一框架。SPCL被表述为一个简洁的优化问题,它既考虑了训练前已知的先验知识,也考虑了训练期间的学习进度。与人类教育相比,SPCL类似于"讲师-学生-协作"学习模式,而不是CL中的"讲师驱动"或SPL中的"学生驱动"。根据经验,我们证明了SPCL在两个任务上的优势

1.2 课程学习

参考阅读

http://huangc.top/2021/06/13/Curriculum-Learning-2021/

1.3

2.

2.1

2.2

2.3

3.

3.1

3.2

3.3

课程学习(CL)或自定进度学习(SPL)代表了最近提出的一种学习制度,其灵感来自人类和动物的学习过程,在训练中逐渐从简单到更复杂的样本。这两种方法具有相似的概念学习范式,但具体的学习方案不同。在CL中,课程由先验知识预先确定,此后保持固定。因此,这种方法在很大程度上依赖于先验知识的质量,而忽略了对学习者的反馈。在SPL中,课程是动态确定的,以适应精益者的学习速度。然而,SPL无法处理先验知识,使其容易过度拟合。在本文中,我们发现了CL和SPL之间缺失的联系,并提出了一个名为自定进度课程倾斜(SPCL)的统一框架。SPCL被表述为一个简洁的优化问题,它既考虑了训练前已知的先验知识,也考虑了训练期间的学习进度。与人类教育相比,SPCL类似于"讲师-学生-协作"的学习模式,而不是CL中的"讲师驱动"或SPL中的"学生驱动"。根据经验,我们证明了SPCL在两个任务上的优势

相关推荐
aigcapi3 小时前
RAG 系统的黑盒测试:从算法对齐视角解析 GEO 优化的技术指标体系
大数据·人工智能·算法
上进小菜猪4 小时前
基于深度学习的河道垃圾检测系统设计(YOLOv8)
人工智能
上天夭4 小时前
模型训练篇
人工智能·深度学习·机器学习
小徐Chao努力4 小时前
【Langchain4j-Java AI开发】09-Agent智能体工作流
java·开发语言·人工智能
Blossom.1184 小时前
AI编译器实战:从零手写算子融合与自动调度系统
人工智能·python·深度学习·机器学习·flask·transformer·tornado
Coder_Boy_4 小时前
SpringAI与LangChain4j的智能应用-(理论篇2)
人工智能·spring boot·langchain·springai
却道天凉_好个秋4 小时前
OpenCV(四十八):图像查找
人工智能·opencv·计算机视觉
Coder_Boy_4 小时前
SpringAI与LangChain4j的智能应用-(理论篇3)
java·人工智能·spring boot·langchain
GetcharZp5 小时前
工地“火眼金睛”!手把手带你用 YOLO11 实现安全帽佩戴检测
人工智能·计算机视觉
Codebee5 小时前
Ooder A2UI架构白皮书
人工智能·响应式编程