hadoop解决数据倾斜的方法

分析&回答

1,如果预聚合不影响最终结果,可以使用conbine,提前对数据聚合,减少数据量。使用combinner合并,combinner是在map阶段,reduce之前的一个中间阶段,在这个阶段可以选择性的把大量的相同key数据先进行一个合并,可以看做是local reduce,然后再交给reduce来处理。

2,使用2次mr的方式。第一次mr,在map输出是给key加上一个前缀,则可以把相同的key分配到不同的reduce聚合,可以实现同一个key数据量大的问题;第二次mr对把第一次mr输出的数据的key去掉前缀,在聚合。

3,增加reduce个数,提示并行度。最容易造成的结果就是大量相同key被partition到一个分区,从而一个reduce执行了大量的工作,而如果我们增加了reduce的个数,这种情况相对来说会减轻很多,毕竟计算的节点多了,就算工作量还是不均匀的,那也要小很多。

4,自定义分区,自定义散列函数,把数据均匀分配到不同reduce。

喵呜面试助手:一站式解决面试问题,你可以搜索微信小程序 [喵呜面试助手] 或关注 [喵呜刷题] -> 面试助手 免费刷题。如有好的面试知识或技巧期待您的共享!

相关推荐
IT观测8 分钟前
选择可信数据空间安全服务商:源堡科技以风险管控能力破局
大数据·科技·安全
linweidong20 分钟前
hive sql行转列,列转行sql的实例
hive·hadoop·sql
CNRio30 分钟前
Day 51:Git的高级技巧:使用Git的reflog恢复丢失的提交
大数据·git·elasticsearch
第七在线35 分钟前
Style Union携手第七在线 全面推进商品管理智能化升级
大数据
kuankeTech40 分钟前
海南封关供应链重构:外贸ERP如何成为企业的“数字海关”
大数据·数据库·人工智能·重构·软件开发·erp
WZGL123041 分钟前
乡村振兴背景下丨农村养老服务的价值重构与路径创新
大数据·人工智能·科技·安全·智能家居
Linux猿43 分钟前
2025年亚马逊全球线上商采趋势与区域洞察报告 | 附PDF
大数据·人工智能·研报精选
2503_946971861 小时前
【SystemDesign/HA】2025年度高可用分布式仿真节点与预测模型容灾演练配置 (Disaster Recovery Config)
大数据·分布式·算法·系统架构·数据集
YangYang9YangYan1 小时前
2026年大专大数据与会计专业核心证书推荐
大数据·学习·数据分析
Lethehong1 小时前
TextIn 赋能!Dify+DeepSeek 高效搭建新能源汽车销量可视化工作流
大数据·前端·python·textin·蓝耘元生代·蓝耘maas